机械化学
化学
共价键
弹性体
高分子科学
纳米技术
有机化学
材料科学
作者
Xuefen Li,Wen‐Sheng Zou,Wenshuai Zhao,Yudong Sun,Anyang Tang,Shufen Zhang,Wenbin Niu
摘要
The macroscopic properties of elastomers are intimately linked to their molecular reactivity and mechanisms. Here, we propose a new strategy for designing strengthening materials based on the synergy of weak covalent bonds and mechanochemistry. After mechanical treatment, the failure strength and toughness of the elastomer increased from 2.37 ± 0.05 MPa and 11.34 ± 0.30 MJ/m3 to 6.02 ± 0.04 MPa and 18.40 ± 0.30 MJ/m3, respectively, while maintaining excellent tensile properties. Notably, experimental tests, theoretical calculations, and small-molecule reaction model results show that the sulfur–carbon bond is more prone to homolysis, and the reactive sites are between sulfur radicals and the end-positioned carbon of the vinyl. The C–S weak bond of spirothiopyran (STP) first undergoes homolysis to dissipate energy suffering from external stress, and the radical-mediated click reaction leads to the interchain cross-linking, thus enhancing the mechanical strength. In the end, the prepared elastomer is further used to construct a photonic elastomer, which exhibits not only mechanical force-enhanced strength but also mechanochromism. The present work provides an opportunity for innovative design of self-strengthening materials, and the prepared novel self-strengthening elastomer has broad applications in visualized strain monitoring, electronic skin, soft robots, and other fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI