3D Bounding Box Estimation Based on COTS mmWave Radar via Moving Scanning

跳跃式监视 雷达 计算机科学 最小边界框 估计 遥感 人工智能 工程类 地质学 电信 系统工程 图像(数学)
作者
Yiwen Feng,Jiayang Zhao,Chuyu Wang,Lei Xie,Sanglu Lu
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:8 (4): 1-27
标识
DOI:10.1145/3699758
摘要

Object boundary estimation, usually achieved by bounding box estimation, is crucial in various applications, such as intelligent driving, which facilitates further interactions like obstacle avoidance and navigation. Existing solutions mainly rely on computer vision, which often performs poorly in low-visibility conditions, e.g., harsh weather, and has limited resolution for depth estimation. Recent studies show the potential of mmWave radar for object detection. However, due to the inherent drawbacks, conventional mmWave techniques suffer from the severe interference of noise points in the points cloud, leading to the position vagueness, as well as sparsity and limited spatial resolution, which leads to the boundary vagueness. In this paper, we propose a novel bounding box estimation system based on mmWave radar that sufficiently leverages the spatial features of the antenna array and the temporal features of moving scanning to detect objects and estimate their 3D bounding boxes. To mitigate the interference from noise points, we introduce a new integration metric, Reflection Saliency, which evaluates the effectiveness of each point based on signal-to-noise ratio (SNR), speed, and spatial domains, successfully reducing the majority of noise points. Moreover, we propose the Prior-Time Heuristic Point Cloud Augmentation method to enrich the point representation of objects based on the previous data. To obtain boundary information, we propose a beamforming-based model to extract the Angle-Reflection Profile (ARP), which depicts the spatial distribution of the object's reflection. Furthermore, a generative neural network is used to refine the boundary and estimate the 3D bounding box by incorporating the ARP features, SNR of cloud points, and depth information. We have implemented an actual system prototype using a robot car in real scenarios and extensive experiments show that the average position error of the proposed system in 3D bounding box estimation is 0.11m.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小船发布了新的文献求助10
2秒前
落叶完成签到 ,获得积分10
2秒前
Dddd完成签到,获得积分10
3秒前
西西完成签到 ,获得积分10
3秒前
大模型应助whuhustwit采纳,获得10
3秒前
4秒前
义气莫茗完成签到 ,获得积分10
4秒前
4秒前
dmmmm发布了新的文献求助10
6秒前
Lala完成签到,获得积分10
6秒前
jack完成签到,获得积分10
6秒前
wanci应助平淡的水风采纳,获得10
7秒前
7秒前
优秀若剑完成签到,获得积分10
9秒前
柯柯啦啦发布了新的文献求助10
9秒前
Lala发布了新的文献求助30
10秒前
上官若男应助妥妥酱采纳,获得10
11秒前
Ling完成签到,获得积分10
11秒前
13秒前
科研通AI2S应助diu采纳,获得10
14秒前
15秒前
漂亮念真完成签到,获得积分20
15秒前
JunJun完成签到 ,获得积分10
15秒前
莞莞类卿完成签到,获得积分10
15秒前
轻松盼山完成签到,获得积分10
17秒前
巴拉巴拉发布了新的文献求助10
17秒前
18秒前
19秒前
NICKPLZ完成签到,获得积分10
19秒前
1234发布了新的文献求助10
20秒前
玉_往前走完成签到,获得积分20
22秒前
星辰大海应助小船采纳,获得10
23秒前
李健应助单薄电源采纳,获得10
23秒前
爆米花应助糖哦采纳,获得10
24秒前
wsh发布了新的文献求助10
24秒前
Vincent发布了新的文献求助10
25秒前
27秒前
28秒前
1234完成签到,获得积分10
29秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Heteroatom-Doped Carbon Allotropes: Progress in Synthesis, Characterization, and Applications 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159847
求助须知:如何正确求助?哪些是违规求助? 2810808
关于积分的说明 7889521
捐赠科研通 2469910
什么是DOI,文献DOI怎么找? 1315173
科研通“疑难数据库(出版商)”最低求助积分说明 630742
版权声明 602012