Dimensionality reduced training by pruning and freezing parts of a deep neural network: a survey

初始化 计算机科学 修剪 维数之咒 人工神经网络 人工智能 机器学习 深度学习 培训(气象学) 农学 生物 物理 气象学 程序设计语言
作者
Paul Wimmer,Jens Mehnert,Alexandru Paul Condurache
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (12): 14257-14295
标识
DOI:10.1007/s10462-023-10489-1
摘要

State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly. A big part of these costs is caused by training the network. Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass. Thus, compressing networks also at training time while maintaining a high performance is an important research topic. This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training. Most of the introduced methods set network parameters to zero which is called pruning. The presented pruning approaches are categorized into pruning at initialization, lottery tickets and dynamic sparse training. Moreover, we discuss methods that freeze parts of a network at its random initialization. By freezing weights, the number of trainable parameters is shrunken which reduces gradient computations and the dimensionality of the model’s optimization space. In this survey we first propose dimensionality reduced training as an underlying mathematical model that covers pruning and freezing during training. Afterwards, we present and discuss different dimensionality reduced training methods—with a strong focus on unstructured pruning and freezing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhuo完成签到,获得积分10
刚刚
刚刚
临风浩歌完成签到 ,获得积分10
1秒前
rrrrrrry发布了新的文献求助10
1秒前
1秒前
云yun完成签到 ,获得积分10
1秒前
研友_VZG7GZ应助chen采纳,获得10
1秒前
2秒前
安详念蕾完成签到,获得积分10
2秒前
小二郎应助猪猪hero采纳,获得10
2秒前
2秒前
十一号发布了新的文献求助10
3秒前
Signs完成签到 ,获得积分10
3秒前
KokuSeito完成签到 ,获得积分10
3秒前
想发sci完成签到,获得积分10
4秒前
赵安安完成签到,获得积分10
4秒前
5秒前
5秒前
圣殿幻龙关注了科研通微信公众号
5秒前
5秒前
5秒前
大胆的太英完成签到 ,获得积分10
5秒前
5秒前
gaomeigeng发布了新的文献求助10
6秒前
6秒前
123发布了新的文献求助10
6秒前
科研通AI6应助秋之至采纳,获得10
6秒前
Evan完成签到 ,获得积分10
7秒前
xc完成签到,获得积分20
7秒前
欣慰的山蝶给欣慰的山蝶的求助进行了留言
7秒前
8秒前
青鸢完成签到,获得积分10
9秒前
hhhyyy发布了新的文献求助10
9秒前
9秒前
稳重凡白完成签到,获得积分10
9秒前
爱笑的谷云完成签到,获得积分20
9秒前
9秒前
学术屎壳郎完成签到,获得积分20
10秒前
bettle发布了新的文献求助10
10秒前
单纯一笑完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409732
求助须知:如何正确求助?哪些是违规求助? 4527293
关于积分的说明 14110056
捐赠科研通 4441780
什么是DOI,文献DOI怎么找? 2437589
邀请新用户注册赠送积分活动 1429594
关于科研通互助平台的介绍 1407723