Dimensionality reduced training by pruning and freezing parts of a deep neural network: a survey

初始化 计算机科学 修剪 维数之咒 人工神经网络 人工智能 机器学习 深度学习 培训(气象学) 农学 生物 物理 气象学 程序设计语言
作者
Paul Wimmer,Jens Mehnert,Alexandru Paul Condurache
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:56 (12): 14257-14295
标识
DOI:10.1007/s10462-023-10489-1
摘要

State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly. A big part of these costs is caused by training the network. Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass. Thus, compressing networks also at training time while maintaining a high performance is an important research topic. This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training. Most of the introduced methods set network parameters to zero which is called pruning. The presented pruning approaches are categorized into pruning at initialization, lottery tickets and dynamic sparse training. Moreover, we discuss methods that freeze parts of a network at its random initialization. By freezing weights, the number of trainable parameters is shrunken which reduces gradient computations and the dimensionality of the model’s optimization space. In this survey we first propose dimensionality reduced training as an underlying mathematical model that covers pruning and freezing during training. Afterwards, we present and discuss different dimensionality reduced training methods—with a strong focus on unstructured pruning and freezing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助沉静的浩然采纳,获得30
刚刚
世外完成签到,获得积分10
刚刚
1秒前
fff完成签到 ,获得积分10
1秒前
热心冷亦完成签到,获得积分10
2秒前
王宇轲发布了新的文献求助10
2秒前
2秒前
2秒前
沉默寄凡完成签到,获得积分10
3秒前
郭郭发布了新的文献求助10
3秒前
3秒前
xmuchem发布了新的文献求助10
4秒前
穆仰发布了新的文献求助10
4秒前
4秒前
科目三应助辛勤的晓兰采纳,获得10
4秒前
sunqi完成签到,获得积分10
5秒前
王青文完成签到,获得积分10
5秒前
zbzfp2025发布了新的文献求助10
5秒前
hy1234完成签到 ,获得积分10
6秒前
6秒前
小张完成签到,获得积分10
7秒前
7秒前
柚溪发布了新的文献求助10
7秒前
8秒前
8秒前
kk发布了新的文献求助10
8秒前
wind完成签到,获得积分10
9秒前
科研通AI5应助mzc采纳,获得10
9秒前
ddsyg126完成签到,获得积分10
10秒前
穆仰完成签到,获得积分10
11秒前
11秒前
Tinweng完成签到 ,获得积分10
12秒前
田国兵完成签到,获得积分10
12秒前
13秒前
13秒前
富贵儿完成签到 ,获得积分10
14秒前
14秒前
14秒前
geather发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Comprehensive Computational Chemistry 2023 800
2026国自然单细胞多组学大红书申报宝典 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4911181
求助须知:如何正确求助?哪些是违规求助? 4186662
关于积分的说明 13000828
捐赠科研通 3954470
什么是DOI,文献DOI怎么找? 2168314
邀请新用户注册赠送积分活动 1186706
关于科研通互助平台的介绍 1094084