Dimensionality reduced training by pruning and freezing parts of a deep neural network: a survey

初始化 计算机科学 修剪 维数之咒 人工神经网络 人工智能 机器学习 深度学习 培训(气象学) 农学 生物 物理 气象学 程序设计语言
作者
Paul Wimmer,Jens Mehnert,Alexandru Paul Condurache
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:56 (12): 14257-14295
标识
DOI:10.1007/s10462-023-10489-1
摘要

State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly. A big part of these costs is caused by training the network. Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass. Thus, compressing networks also at training time while maintaining a high performance is an important research topic. This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training. Most of the introduced methods set network parameters to zero which is called pruning. The presented pruning approaches are categorized into pruning at initialization, lottery tickets and dynamic sparse training. Moreover, we discuss methods that freeze parts of a network at its random initialization. By freezing weights, the number of trainable parameters is shrunken which reduces gradient computations and the dimensionality of the model’s optimization space. In this survey we first propose dimensionality reduced training as an underlying mathematical model that covers pruning and freezing during training. Afterwards, we present and discuss different dimensionality reduced training methods—with a strong focus on unstructured pruning and freezing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
活ni的pig完成签到 ,获得积分10
1秒前
Akim应助snjzsj采纳,获得10
3秒前
4秒前
含糊的泥猴桃完成签到 ,获得积分10
5秒前
爆米花应助周围采纳,获得30
7秒前
Thea完成签到,获得积分10
8秒前
吴倩发布了新的文献求助10
9秒前
12秒前
核桃发布了新的文献求助30
15秒前
16秒前
Yangpc发布了新的文献求助10
16秒前
鲜艳的访风完成签到,获得积分10
17秒前
19秒前
19秒前
熊猫发布了新的文献求助10
21秒前
爆米花应助off采纳,获得10
21秒前
常乐长安发布了新的文献求助10
22秒前
hy完成签到 ,获得积分10
23秒前
玉yu完成签到 ,获得积分10
23秒前
shusen完成签到,获得积分10
24秒前
24秒前
26秒前
仁爱山彤完成签到 ,获得积分10
28秒前
杨诗婕完成签到 ,获得积分10
28秒前
29秒前
stanley发布了新的文献求助10
30秒前
科研通AI5应助hhh采纳,获得10
31秒前
Memory发布了新的文献求助30
31秒前
量子星尘发布了新的文献求助10
31秒前
31秒前
32秒前
GHOMON完成签到,获得积分10
33秒前
33秒前
34秒前
35秒前
安详的白云完成签到 ,获得积分10
37秒前
37秒前
37秒前
Owen应助震甫采纳,获得30
38秒前
qwt00发布了新的文献求助10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586386
求助须知:如何正确求助?哪些是违规求助? 4002819
关于积分的说明 12391220
捐赠科研通 3678978
什么是DOI,文献DOI怎么找? 2027763
邀请新用户注册赠送积分活动 1061227
科研通“疑难数据库(出版商)”最低求助积分说明 947598