Dimensionality reduced training by pruning and freezing parts of a deep neural network: a survey

初始化 计算机科学 修剪 维数之咒 人工神经网络 人工智能 机器学习 深度学习 培训(气象学) 农学 生物 物理 气象学 程序设计语言
作者
Paul Wimmer,Jens Mehnert,Alexandru Paul Condurache
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (12): 14257-14295
标识
DOI:10.1007/s10462-023-10489-1
摘要

State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly. A big part of these costs is caused by training the network. Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass. Thus, compressing networks also at training time while maintaining a high performance is an important research topic. This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training. Most of the introduced methods set network parameters to zero which is called pruning. The presented pruning approaches are categorized into pruning at initialization, lottery tickets and dynamic sparse training. Moreover, we discuss methods that freeze parts of a network at its random initialization. By freezing weights, the number of trainable parameters is shrunken which reduces gradient computations and the dimensionality of the model’s optimization space. In this survey we first propose dimensionality reduced training as an underlying mathematical model that covers pruning and freezing during training. Afterwards, we present and discuss different dimensionality reduced training methods—with a strong focus on unstructured pruning and freezing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助风清扬采纳,获得10
1秒前
62ccc发布了新的文献求助20
2秒前
Hello应助留胡子的萝莉采纳,获得10
2秒前
星辰大海应助关松泉采纳,获得10
3秒前
含蓄以云完成签到,获得积分20
4秒前
5秒前
5秒前
嘿嘿发布了新的文献求助10
5秒前
5秒前
6秒前
7秒前
9秒前
cjdsb发布了新的文献求助10
10秒前
10秒前
62ccc完成签到,获得积分10
10秒前
梦幻完成签到 ,获得积分10
11秒前
Ian_Zhang应助昌莆采纳,获得30
11秒前
ZYS发布了新的文献求助10
12秒前
含蓄以云发布了新的文献求助30
12秒前
明朗发布了新的文献求助10
12秒前
12秒前
13秒前
XYF发布了新的文献求助10
13秒前
15秒前
15秒前
落寞的访彤完成签到 ,获得积分10
16秒前
16秒前
16秒前
罐罐儿应助wqnb666采纳,获得10
17秒前
17秒前
18秒前
韩野发布了新的文献求助10
18秒前
18秒前
19秒前
桔梗发布了新的文献求助10
19秒前
h123发布了新的文献求助10
19秒前
20秒前
SciGPT应助风趣友琴采纳,获得10
20秒前
CipherSage应助suchui采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5393870
求助须知:如何正确求助?哪些是违规求助? 4515281
关于积分的说明 14053296
捐赠科研通 4426429
什么是DOI,文献DOI怎么找? 2431383
邀请新用户注册赠送积分活动 1423533
关于科研通互助平台的介绍 1402529