Dimensionality reduced training by pruning and freezing parts of a deep neural network: a survey

初始化 计算机科学 修剪 维数之咒 人工神经网络 人工智能 机器学习 深度学习 培训(气象学) 农学 生物 物理 气象学 程序设计语言
作者
Paul Wimmer,Jens Mehnert,Alexandru Paul Condurache
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:56 (12): 14257-14295
标识
DOI:10.1007/s10462-023-10489-1
摘要

State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly. A big part of these costs is caused by training the network. Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass. Thus, compressing networks also at training time while maintaining a high performance is an important research topic. This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training. Most of the introduced methods set network parameters to zero which is called pruning. The presented pruning approaches are categorized into pruning at initialization, lottery tickets and dynamic sparse training. Moreover, we discuss methods that freeze parts of a network at its random initialization. By freezing weights, the number of trainable parameters is shrunken which reduces gradient computations and the dimensionality of the model’s optimization space. In this survey we first propose dimensionality reduced training as an underlying mathematical model that covers pruning and freezing during training. Afterwards, we present and discuss different dimensionality reduced training methods—with a strong focus on unstructured pruning and freezing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
QixuGuo发布了新的文献求助10
3秒前
4秒前
鸣笛应助满意的世界采纳,获得50
4秒前
Francois给Francois的求助进行了留言
4秒前
范白白发布了新的文献求助30
4秒前
科研CY完成签到 ,获得积分10
4秒前
6秒前
柚子完成签到,获得积分10
8秒前
cassie发布了新的文献求助10
8秒前
xiaoyaoswim完成签到,获得积分10
8秒前
鸣笛应助李李李采纳,获得10
9秒前
9秒前
跳跃的水蓝完成签到 ,获得积分10
9秒前
10秒前
12秒前
nananan发布了新的文献求助10
12秒前
汉堡包应助Xiaojiu采纳,获得10
12秒前
柚子发布了新的文献求助10
13秒前
科目三应助garrick采纳,获得10
14秒前
14秒前
QYPANG发布了新的文献求助10
15秒前
笨笨豌豆完成签到 ,获得积分10
15秒前
17秒前
急诊守夜人完成签到,获得积分10
19秒前
酷波er应助李昕123采纳,获得10
20秒前
111发布了新的文献求助10
20秒前
黄花花完成签到,获得积分10
21秒前
21秒前
爆米花应助研友_nVWP2Z采纳,获得10
21秒前
人言可畏完成签到 ,获得积分10
21秒前
SemiConduAG发布了新的文献求助30
22秒前
Ava应助北陆小猫采纳,获得10
24秒前
24秒前
xss发布了新的文献求助10
26秒前
28秒前
科研达人发布了新的文献求助10
29秒前
31秒前
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629