Dimensionality reduced training by pruning and freezing parts of a deep neural network: a survey

初始化 计算机科学 修剪 维数之咒 人工神经网络 人工智能 机器学习 深度学习 培训(气象学) 农学 生物 物理 气象学 程序设计语言
作者
Paul Wimmer,Jens Mehnert,Alexandru Paul Condurache
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (12): 14257-14295
标识
DOI:10.1007/s10462-023-10489-1
摘要

State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly. A big part of these costs is caused by training the network. Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass. Thus, compressing networks also at training time while maintaining a high performance is an important research topic. This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training. Most of the introduced methods set network parameters to zero which is called pruning. The presented pruning approaches are categorized into pruning at initialization, lottery tickets and dynamic sparse training. Moreover, we discuss methods that freeze parts of a network at its random initialization. By freezing weights, the number of trainable parameters is shrunken which reduces gradient computations and the dimensionality of the model’s optimization space. In this survey we first propose dimensionality reduced training as an underlying mathematical model that covers pruning and freezing during training. Afterwards, we present and discuss different dimensionality reduced training methods—with a strong focus on unstructured pruning and freezing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
迷人耗子精完成签到,获得积分10
2秒前
闾丘惜萱发布了新的文献求助10
2秒前
打打应助阿榆采纳,获得10
2秒前
BachelorYY完成签到,获得积分10
2秒前
3秒前
3秒前
150发布了新的文献求助10
3秒前
DOG完成签到,获得积分10
4秒前
5秒前
LmaPN7发布了新的文献求助20
5秒前
kk发布了新的文献求助20
5秒前
khurram发布了新的文献求助10
6秒前
6秒前
香蕉觅云应助yy湫采纳,获得10
7秒前
端庄的含卉完成签到,获得积分10
7秒前
Kayla发布了新的文献求助10
8秒前
8秒前
sissiarno应助加菲丰丰采纳,获得70
8秒前
9秒前
葡萄干发布了新的文献求助10
9秒前
jing发布了新的文献求助10
9秒前
9秒前
Jeux完成签到,获得积分10
9秒前
某H发布了新的文献求助10
10秒前
樊伟诚完成签到,获得积分10
10秒前
11秒前
12秒前
小刘一定能读C9博完成签到 ,获得积分10
12秒前
qize发布了新的文献求助20
13秒前
俏皮的尔风完成签到,获得积分10
13秒前
13秒前
一禅发布了新的文献求助10
13秒前
13秒前
Xin发布了新的文献求助10
13秒前
14秒前
kk完成签到,获得积分10
14秒前
15秒前
风中亦凝发布了新的文献求助10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309103
求助须知:如何正确求助?哪些是违规求助? 2942468
关于积分的说明 8508989
捐赠科研通 2617498
什么是DOI,文献DOI怎么找? 1430174
科研通“疑难数据库(出版商)”最低求助积分说明 664072
邀请新用户注册赠送积分活动 649239