Dimensionality reduced training by pruning and freezing parts of a deep neural network: a survey

初始化 计算机科学 修剪 维数之咒 人工神经网络 人工智能 机器学习 深度学习 培训(气象学) 农学 生物 物理 气象学 程序设计语言
作者
Paul Wimmer,Jens Mehnert,Alexandru Paul Condurache
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (12): 14257-14295
标识
DOI:10.1007/s10462-023-10489-1
摘要

State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly. A big part of these costs is caused by training the network. Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass. Thus, compressing networks also at training time while maintaining a high performance is an important research topic. This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training. Most of the introduced methods set network parameters to zero which is called pruning. The presented pruning approaches are categorized into pruning at initialization, lottery tickets and dynamic sparse training. Moreover, we discuss methods that freeze parts of a network at its random initialization. By freezing weights, the number of trainable parameters is shrunken which reduces gradient computations and the dimensionality of the model’s optimization space. In this survey we first propose dimensionality reduced training as an underlying mathematical model that covers pruning and freezing during training. Afterwards, we present and discuss different dimensionality reduced training methods—with a strong focus on unstructured pruning and freezing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zqingxia完成签到,获得积分10
1秒前
李爱国应助yy严采纳,获得10
1秒前
1秒前
打打应助霍志美采纳,获得10
2秒前
dove00发布了新的文献求助10
2秒前
GingerF应助cnspower采纳,获得50
2秒前
顾矜应助子小孙采纳,获得10
2秒前
温暖富完成签到,获得积分10
3秒前
3秒前
4秒前
清爽的青枫完成签到,获得积分10
4秒前
鹿鹿完成签到,获得积分10
4秒前
zqingxia发布了新的文献求助10
5秒前
6秒前
科研通AI6应助冷酷的绿旋采纳,获得10
6秒前
6秒前
温暖富发布了新的文献求助10
7秒前
SciGPT应助张建文采纳,获得10
7秒前
8秒前
9秒前
林子鸿完成签到 ,获得积分10
9秒前
Chanpi完成签到,获得积分10
10秒前
zyx完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
研友_VZG7GZ应助FG采纳,获得10
13秒前
mu完成签到,获得积分10
13秒前
zl完成签到,获得积分10
14秒前
14秒前
14秒前
子小孙发布了新的文献求助10
14秒前
连仁兄发布了新的文献求助10
14秒前
lsw发布了新的文献求助10
14秒前
明理的帆布鞋应助Kenny采纳,获得10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430372
求助须知:如何正确求助?哪些是违规求助? 4543585
关于积分的说明 14188041
捐赠科研通 4461764
什么是DOI,文献DOI怎么找? 2446288
邀请新用户注册赠送积分活动 1437689
关于科研通互助平台的介绍 1414458