已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Dimensionality reduced training by pruning and freezing parts of a deep neural network: a survey

初始化 计算机科学 修剪 维数之咒 人工神经网络 人工智能 机器学习 深度学习 培训(气象学) 农学 生物 物理 气象学 程序设计语言
作者
Paul Wimmer,Jens Mehnert,Alexandru Paul Condurache
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (12): 14257-14295
标识
DOI:10.1007/s10462-023-10489-1
摘要

State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly. A big part of these costs is caused by training the network. Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass. Thus, compressing networks also at training time while maintaining a high performance is an important research topic. This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training. Most of the introduced methods set network parameters to zero which is called pruning. The presented pruning approaches are categorized into pruning at initialization, lottery tickets and dynamic sparse training. Moreover, we discuss methods that freeze parts of a network at its random initialization. By freezing weights, the number of trainable parameters is shrunken which reduces gradient computations and the dimensionality of the model’s optimization space. In this survey we first propose dimensionality reduced training as an underlying mathematical model that covers pruning and freezing during training. Afterwards, we present and discuss different dimensionality reduced training methods—with a strong focus on unstructured pruning and freezing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木子李发布了新的文献求助10
刚刚
zaixianqiuzu发布了新的文献求助10
1秒前
1秒前
Willow完成签到,获得积分10
2秒前
研友_VZG7GZ应助sptyzl采纳,获得10
2秒前
3秒前
灰灰发布了新的文献求助10
3秒前
苻谷丝发布了新的文献求助10
4秒前
5秒前
火星上的冰淇淋完成签到 ,获得积分10
7秒前
willenliu发布了新的文献求助10
8秒前
李健应助Echopotter采纳,获得10
9秒前
微微关注了科研通微信公众号
9秒前
eggache完成签到,获得积分10
10秒前
香菜完成签到,获得积分20
11秒前
苻谷丝完成签到,获得积分10
13秒前
SciGPT应助健忘的如柏采纳,获得20
14秒前
shuangfeng1853完成签到 ,获得积分10
15秒前
香菜发布了新的文献求助20
16秒前
behre完成签到,获得积分10
16秒前
黑小羿发布了新的文献求助20
17秒前
18秒前
今后应助ZZT采纳,获得10
18秒前
19秒前
Lucas应助张宝采纳,获得10
19秒前
19秒前
21秒前
瞿寒发布了新的文献求助30
22秒前
Corilla发布了新的文献求助10
23秒前
微微发布了新的文献求助10
25秒前
泡泡完成签到 ,获得积分10
26秒前
26秒前
27秒前
黑小羿完成签到,获得积分10
28秒前
29秒前
29秒前
罗二狗完成签到,获得积分10
30秒前
专一的大神完成签到,获得积分10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5407380
求助须知:如何正确求助?哪些是违规求助? 4524989
关于积分的说明 14100518
捐赠科研通 4438717
什么是DOI,文献DOI怎么找? 2436477
邀请新用户注册赠送积分活动 1428447
关于科研通互助平台的介绍 1406479