亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A new deep convolutional neural network incorporating attentional mechanisms for ECG emotion recognition

卷积神经网络 计算机科学 人工智能 模式识别(心理学) 深度学习 特征(语言学) 块(置换群论) 频道(广播) 语音识别 几何学 计算机网络 数学 语言学 哲学
作者
Tianqi Fan,Sen Qiu,Zhelong Wang,Hongyu Zhao,Junhan Jiang,Yongzhen Wang,Junnan Xu,Tao Sun,Nan Jiang
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:159: 106938-106938 被引量:44
标识
DOI:10.1016/j.compbiomed.2023.106938
摘要

Using ECG signals captured by wearable devices for emotion recognition is a feasible solution. We propose a deep convolutional neural network incorporating attentional mechanisms for ECG emotion recognition. In order to address the problem of individuality differences in emotion recognition tasks, we incorporate an improved Convolutional Block Attention Module (CBAM) into the proposed deep convolutional neural network. The deep convolutional neural network is responsible for capturing ECG features. Channel attention in CBAM is responsible for adding weight information to ECG features of different channels and spatial attention is responsible for the weighted representation of ECG features of different regions inside the channel. We used three publicly available datasets, WESAD, DREAMER, and ASCERTAIN, for the ECG emotion recognition task. The new state-of-the-art results are set in three datasets for multi-class classification results, WESAD for tri-class results, and ASCERTAIN for two-category results, respectively. A large number of experiments are performed, providing an interesting analysis of the design of the convolutional structure parameters and the role of the attention mechanism used. We propose to use large convolutional kernels to improve the effective perceptual field of the model and thus fully capture the ECG signal features, which achieves better performance compared to the commonly used small kernels. In addition, channel attention and spatial attention were added to the deep convolutional model separately to explore their contribution levels. We found that in most cases, channel attention contributed to the model at a higher level than spatial attention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助lsq采纳,获得10
3秒前
15秒前
lsq发布了新的文献求助10
19秒前
量子星尘发布了新的文献求助10
20秒前
华仔应助毅毅采纳,获得30
21秒前
52秒前
yx_cheng应助科研通管家采纳,获得10
55秒前
yx_cheng应助科研通管家采纳,获得10
55秒前
希望天下0贩的0应助wyx采纳,获得10
56秒前
oldcat96发布了新的文献求助10
1分钟前
紧张的书本完成签到,获得积分20
1分钟前
研友_VZG7GZ应助紧张的书本采纳,获得10
1分钟前
myg123完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
RAIN发布了新的文献求助10
1分钟前
wyx发布了新的文献求助10
1分钟前
李健的小迷弟应助bababiba采纳,获得10
1分钟前
1分钟前
追三完成签到 ,获得积分10
1分钟前
大个应助RAIN采纳,获得10
1分钟前
碳酸芙兰完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
毅毅发布了新的文献求助30
2分钟前
2分钟前
毅毅完成签到,获得积分10
2分钟前
清爽乐菱应助科研通管家采纳,获得30
2分钟前
2分钟前
3分钟前
3分钟前
Rondab应助firesquall采纳,获得10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
CMY发布了新的文献求助10
3分钟前
杨涵完成签到 ,获得积分10
3分钟前
4分钟前
RAIN发布了新的文献求助10
4分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008109
求助须知:如何正确求助?哪些是违规求助? 3547893
关于积分的说明 11298611
捐赠科研通 3282850
什么是DOI,文献DOI怎么找? 1810216
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188