Multi-modality attribute learning-based method for drug–protein interaction prediction based on deep neural network

计算机科学 人工智能 卷积神经网络 模态(人机交互) 图形 人工神经网络 变压器 深度学习 代表(政治) 特征学习 机器学习 编码 模式识别(心理学) 理论计算机科学 化学 政治学 法学 电压 物理 基因 政治 生物化学 量子力学
作者
Weihe Dong,Qiang Yang,Jian Wang,Long Xu,Xiaokun Li,Gongning Luo,Sarah Krichbaum
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:3
标识
DOI:10.1093/bib/bbad161
摘要

Identification of active candidate compounds for target proteins, also called drug-protein interaction (DPI) prediction, is an essential but time-consuming and expensive step, which leads to fostering the development of drug discovery. In recent years, deep network-based learning methods were frequently proposed in DPIs due to their powerful capability of feature representation. However, the performance of existing DPI methods is still limited by insufficiently labeled pharmacological data and neglected intermolecular information. Therefore, overcoming these difficulties to perfect the performance of DPIs is an urgent challenge for researchers. In this article, we designed an innovative 'multi-modality attributes' learning-based framework for DPIs with molecular transformer and graph convolutional networks, termed, multi-modality attributes (MMA)-DPI. Specifically, intermolecular sub-structural information and chemical semantic representations were extracted through an augmented transformer module from biomedical data. A tri-layer graph convolutional neural network module was applied to associate the neighbor topology information and learn the condensed dimensional features by aggregating a heterogeneous network that contains multiple biological representations of drugs, proteins, diseases and side effects. Then, the learned representations were taken as the input of a fully connected neural network module to further integrate them in molecular and topological space. Finally, the attribute representations were fused with adaptive learning weights to calculate the interaction score for the DPIs tasks. MMA-DPI was evaluated in different experimental conditions and the results demonstrate that the proposed method achieved higher performance than existing state-of-the-art frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
venuslion80发布了新的文献求助10
刚刚
王十三发布了新的文献求助10
1秒前
施中明发布了新的文献求助10
2秒前
杜杜发布了新的文献求助10
3秒前
陶醉大侠发布了新的文献求助10
3秒前
syyy完成签到,获得积分10
3秒前
ljy完成签到,获得积分10
4秒前
隐形的以云完成签到 ,获得积分10
4秒前
6秒前
领导范儿应助zxzxzxzxzx采纳,获得10
7秒前
9秒前
静静子发布了新的文献求助10
11秒前
思源应助陶醉大侠采纳,获得10
13秒前
14秒前
调调单单完成签到,获得积分10
14秒前
15秒前
16秒前
www完成签到,获得积分10
18秒前
多多西瓜头丶完成签到,获得积分10
19秒前
19秒前
21秒前
李健应助mumu采纳,获得10
22秒前
所所应助gs19960828采纳,获得10
22秒前
古力果发布了新的文献求助10
22秒前
xy完成签到 ,获得积分10
23秒前
23秒前
wen发布了新的文献求助10
23秒前
24秒前
子车茗应助小刘采纳,获得10
25秒前
25秒前
27秒前
SPLjoker完成签到 ,获得积分10
28秒前
小柒发布了新的文献求助10
29秒前
30秒前
CodeCraft应助安静的棉花糖采纳,获得10
30秒前
me发布了新的文献求助10
31秒前
麻辣香郭完成签到 ,获得积分10
32秒前
害羞的裘发布了新的文献求助30
32秒前
Juyi完成签到,获得积分10
35秒前
Hello应助起风了采纳,获得10
37秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Becoming: An Introduction to Jung's Concept of Individuation 600
Evolution 3rd edition 500
Die Gottesanbeterin: Mantis religiosa: 656 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3171184
求助须知:如何正确求助?哪些是违规求助? 2822083
关于积分的说明 7937925
捐赠科研通 2482524
什么是DOI,文献DOI怎么找? 1322654
科研通“疑难数据库(出版商)”最低求助积分说明 633669
版权声明 602627