亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-modality attribute learning-based method for drug–protein interaction prediction based on deep neural network

计算机科学 人工智能 卷积神经网络 模态(人机交互) 图形 人工神经网络 变压器 深度学习 代表(政治) 特征学习 机器学习 编码 模式识别(心理学) 理论计算机科学 化学 政治学 法学 电压 物理 基因 政治 生物化学 量子力学
作者
Weihe Dong,Qiang Yang,Jian Wang,Long Xu,Xiaokun Li,Gongning Luo,Xin Gao
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:26
标识
DOI:10.1093/bib/bbad161
摘要

Abstract Identification of active candidate compounds for target proteins, also called drug–protein interaction (DPI) prediction, is an essential but time-consuming and expensive step, which leads to fostering the development of drug discovery. In recent years, deep network-based learning methods were frequently proposed in DPIs due to their powerful capability of feature representation. However, the performance of existing DPI methods is still limited by insufficiently labeled pharmacological data and neglected intermolecular information. Therefore, overcoming these difficulties to perfect the performance of DPIs is an urgent challenge for researchers. In this article, we designed an innovative ’multi-modality attributes’ learning-based framework for DPIs with molecular transformer and graph convolutional networks, termed, multi-modality attributes (MMA)-DPI. Specifically, intermolecular sub-structural information and chemical semantic representations were extracted through an augmented transformer module from biomedical data. A tri-layer graph convolutional neural network module was applied to associate the neighbor topology information and learn the condensed dimensional features by aggregating a heterogeneous network that contains multiple biological representations of drugs, proteins, diseases and side effects. Then, the learned representations were taken as the input of a fully connected neural network module to further integrate them in molecular and topological space. Finally, the attribute representations were fused with adaptive learning weights to calculate the interaction score for the DPIs tasks. MMA-DPI was evaluated in different experimental conditions and the results demonstrate that the proposed method achieved higher performance than existing state-of-the-art frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
凉的白开完成签到,获得积分10
24秒前
andrele发布了新的文献求助10
29秒前
和风完成签到 ,获得积分10
38秒前
CCS完成签到 ,获得积分10
40秒前
SCI的芷蝶完成签到 ,获得积分10
53秒前
54秒前
aaa发布了新的文献求助10
54秒前
自由岛发布了新的文献求助10
1分钟前
酷波er应助科研小白采纳,获得10
1分钟前
1分钟前
斯文败类应助aaa采纳,获得10
1分钟前
MCCCCC_6发布了新的文献求助10
1分钟前
michael完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
酷酷翅膀发布了新的文献求助10
1分钟前
xuan发布了新的文献求助10
1分钟前
CMUSK完成签到 ,获得积分10
1分钟前
2分钟前
燕海雪发布了新的文献求助30
2分钟前
xuan完成签到,获得积分10
2分钟前
Owen应助杜大帅采纳,获得10
2分钟前
2分钟前
yunshui发布了新的文献求助10
2分钟前
深情安青应助TXZ06采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
云溪关注了科研通微信公众号
2分钟前
2分钟前
鱼鱼鱼鱼鱼完成签到 ,获得积分10
2分钟前
2分钟前
痞老板死磕蟹黄堡完成签到 ,获得积分10
2分钟前
杨涵完成签到 ,获得积分10
3分钟前
3分钟前
九月发布了新的文献求助10
3分钟前
3分钟前
云溪发布了新的文献求助20
3分钟前
TXZ06发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788346
求助须知:如何正确求助?哪些是违规求助? 5706422
关于积分的说明 15473418
捐赠科研通 4916427
什么是DOI,文献DOI怎么找? 2646333
邀请新用户注册赠送积分活动 1593998
关于科研通互助平台的介绍 1548436