已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-modality attribute learning-based method for drug–protein interaction prediction based on deep neural network

计算机科学 人工智能 卷积神经网络 模态(人机交互) 图形 人工神经网络 变压器 深度学习 代表(政治) 特征学习 机器学习 编码 模式识别(心理学) 理论计算机科学 化学 政治学 法学 电压 物理 基因 政治 生物化学 量子力学
作者
Weihe Dong,Qiang Yang,Jian Wang,Long Xu,Xiaokun Li,Gongning Luo,Sarah Krichbaum
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (3) 被引量:3
标识
DOI:10.1093/bib/bbad161
摘要

Identification of active candidate compounds for target proteins, also called drug-protein interaction (DPI) prediction, is an essential but time-consuming and expensive step, which leads to fostering the development of drug discovery. In recent years, deep network-based learning methods were frequently proposed in DPIs due to their powerful capability of feature representation. However, the performance of existing DPI methods is still limited by insufficiently labeled pharmacological data and neglected intermolecular information. Therefore, overcoming these difficulties to perfect the performance of DPIs is an urgent challenge for researchers. In this article, we designed an innovative 'multi-modality attributes' learning-based framework for DPIs with molecular transformer and graph convolutional networks, termed, multi-modality attributes (MMA)-DPI. Specifically, intermolecular sub-structural information and chemical semantic representations were extracted through an augmented transformer module from biomedical data. A tri-layer graph convolutional neural network module was applied to associate the neighbor topology information and learn the condensed dimensional features by aggregating a heterogeneous network that contains multiple biological representations of drugs, proteins, diseases and side effects. Then, the learned representations were taken as the input of a fully connected neural network module to further integrate them in molecular and topological space. Finally, the attribute representations were fused with adaptive learning weights to calculate the interaction score for the DPIs tasks. MMA-DPI was evaluated in different experimental conditions and the results demonstrate that the proposed method achieved higher performance than existing state-of-the-art frameworks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ben发布了新的文献求助10
刚刚
ahan完成签到,获得积分10
刚刚
H1lb2rt完成签到 ,获得积分10
2秒前
窝恁叠发布了新的文献求助10
3秒前
eric888应助萧水白采纳,获得100
3秒前
深海soda完成签到,获得积分10
4秒前
9秒前
米米米完成签到 ,获得积分20
9秒前
FIN应助科研通管家采纳,获得30
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
allshestar完成签到 ,获得积分0
12秒前
sun发布了新的文献求助10
14秒前
白菜包子完成签到 ,获得积分10
14秒前
香蕉觅云应助今夕何夕采纳,获得10
14秒前
18秒前
听风者完成签到 ,获得积分10
19秒前
summer木发布了新的文献求助10
20秒前
sun发布了新的文献求助30
22秒前
22秒前
23秒前
董蓝天完成签到 ,获得积分10
23秒前
25秒前
Archy发布了新的文献求助10
25秒前
26秒前
俊逸如风发布了新的文献求助10
27秒前
HHYYAA发布了新的文献求助10
28秒前
搜集达人应助帅气的夏天采纳,获得10
29秒前
30秒前
klandcy完成签到,获得积分10
31秒前
背后飞柏发布了新的文献求助10
31秒前
在水一方应助HHYYAA采纳,获得10
34秒前
小二郎应助Hunter采纳,获得10
34秒前
明亮紫易完成签到,获得积分10
35秒前
热情安卉关注了科研通微信公众号
35秒前
36秒前
Ascender发布了新的文献求助10
36秒前
Yesyes发布了新的文献求助10
41秒前
41秒前
43秒前
Lucas应助默默洋葱采纳,获得10
44秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959920
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128046
捐赠科研通 3238071
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021