Multiscale Cross-Modal Homogeneity Enhancement and Confidence-Aware Fusion for Multispectral Pedestrian Detection

计算机科学 多光谱图像 行人检测 人工智能 情态动词 特征提取 模式识别(心理学) RGB颜色模型 同质性(统计学) 传感器融合 目标检测 计算机视觉 机器学习 行人 工程类 化学 运输工程 高分子化学
作者
Ruimin Li,Jiajun Xiang,Feixiang Sun,Ye Yuan,Longwu Yuan,Shuiping Gou
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 852-863 被引量:8
标识
DOI:10.1109/tmm.2023.3272471
摘要

Multispectral pedestrian detection has shown many advantages in a variety of environments, particularly poor illumination conditions, by leveraging visible-thermal modalities. However, in-depth insight into distinguishing the complementary content of multimodal data and exploring the extent of multimodal feature fusion is still lacking. In this paper, we propose a novel multispectral pedestrian detector with multiscale cross-modal homogeneity enhancement and confidence-aware feature fusion. RGB and thermal streams are constructed to extract features and generate candidate proposals. During feature extraction, multiscale cross-modal homogeneity enhancement is proposed to enhance single-modal features using the separated homogeneous features via modal interactions. Homogeneity features encode the semantic information of the scene and are extracted from the RGB-thermal pairs by employing a channel attention mechanism. Proposals from two modalities are united to obtain multimodal proposals. Then, confidence measurement fusion is proposed to achieve multispectral feature fusion in each proposal by measuring the internal confidence of each modality and the interaction confidence between modalities. In addition, a confidence transfer loss function is designed to focus more on hard-to-detect samples during training. Experimental results on two challenging datasets demonstrate that the proposed method achieves better performance compared to existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐子完成签到,获得积分10
1秒前
花生土豆发布了新的文献求助10
1秒前
hhhlulu完成签到,获得积分20
1秒前
1秒前
完美世界应助HQ采纳,获得10
1秒前
MorningStar应助我要住giao楼采纳,获得10
1秒前
2秒前
青青草发布了新的文献求助10
2秒前
3秒前
3秒前
MAIDANG完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
张羊羔完成签到,获得积分10
5秒前
6秒前
幻人发布了新的文献求助10
6秒前
可爱的函函应助嬴政飞采纳,获得10
6秒前
7秒前
7秒前
Keven发布了新的文献求助10
8秒前
lhh发布了新的文献求助10
8秒前
完美世界应助嗨嗨采纳,获得10
8秒前
8秒前
Peakfeng发布了新的文献求助10
8秒前
先知35发布了新的文献求助10
8秒前
Shen发布了新的文献求助10
8秒前
9秒前
nenoaowu发布了新的文献求助10
9秒前
9秒前
EMMA发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助半夏采纳,获得10
10秒前
10秒前
bzy发布了新的文献求助10
10秒前
11秒前
阳光的可愁完成签到,获得积分20
11秒前
123lx发布了新的文献求助10
11秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217320
求助须知:如何正确求助?哪些是违规求助? 2866528
关于积分的说明 8152235
捐赠科研通 2533239
什么是DOI,文献DOI怎么找? 1366165
科研通“疑难数据库(出版商)”最低求助积分说明 644687
邀请新用户注册赠送积分活动 617684