已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Contribution of whole slide imaging‐based deep learning in the assessment of intraoperative and postoperative sections in neuropathology

H&E染色 医学 星形细胞瘤 病理 医学诊断 染色 放射科 核医学 人工智能 计算机科学 胶质瘤 癌症研究
作者
Liting Shi,Lin Shen,Junming Jian,Wei Xia,Keda Yang,Yifu Tian,Jianghai Huang,Bowen Yuan,Liangfang Shen,Zhengzheng Liu,Jiayi Zhang,Rui Zhang,Keqing Wu,Di Jing,Xin Gao
出处
期刊:Brain Pathology [Wiley]
卷期号:33 (4) 被引量:3
标识
DOI:10.1111/bpa.13160
摘要

Abstract The pathological diagnosis of intracranial germinoma (IG), oligodendroglioma, and low‐grade astrocytoma on intraoperative frozen section (IFS) and hematoxylin–eosin (HE)‐staining section directly determines patients' treatment options, but it is a difficult task for pathologists. We aimed to investigate whether whole‐slide imaging (WSI)‐based deep learning can contribute new precision to the diagnosis of IG, oligodendroglioma, and low‐grade astrocytoma. Two types of WSIs (500 IFSs and 832 HE‐staining sections) were collected from 379 patients at multiple medical centers. Patients at Center 1 were split into the training, testing, and internal validation sets (3:1:1), while the other centers were the external validation sets. First, we subdivided WSIs into small tiles and selected tissue tiles using a tissue tile selection model. Then a tile‐level classification model was established, and the majority voting method was used to determine the final diagnoses. Color jitter was applied to the tiles so that the deep learning (DL) models could adapt to the variations in the staining. Last, we investigated the effectiveness of model assistance. The internal validation accuracies of the IFS and HE models were 93.9% and 95.3%, respectively. The external validation accuracies of the IFS and HE models were 82.0% and 76.9%, respectively. Furthermore, the IFS and HE models can predict Ki‐67 positive cell areas with R 2 of 0.81 and 0.86, respectively. With model assistance, the IFS and HE diagnosis accuracy of pathologists improved from 54.6%–69.7% and 53.5%–83.7% to 87.9%–93.9% and 86.0%–90.7%, respectively. Both the IFS model and the HE model can differentiate the three tumors, predict the expression of Ki‐67, and improve the diagnostic accuracy of pathologists. The use of our model can assist clinicians in providing patients with optimal and timely treatment options.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
轻语完成签到 ,获得积分10
1秒前
英姑应助暴走乄采纳,获得10
2秒前
共享精神应助香樟沐雪采纳,获得10
4秒前
hq完成签到 ,获得积分10
5秒前
wanci应助hooke采纳,获得10
7秒前
9秒前
共享精神应助ylzylz采纳,获得10
10秒前
咖褐完成签到 ,获得积分10
10秒前
Doctor_Xie发布了新的文献求助10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
赘婿应助科研通管家采纳,获得10
13秒前
abc完成签到 ,获得积分0
15秒前
15秒前
火星上的如松完成签到,获得积分10
16秒前
Xhhaai完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
Nam22完成签到,获得积分20
20秒前
思源应助hi采纳,获得10
22秒前
嘿嘿发布了新的文献求助20
22秒前
搜集达人应助暴走乄采纳,获得20
23秒前
ylzylz发布了新的文献求助10
23秒前
木昆完成签到 ,获得积分10
23秒前
28秒前
嘿嘿完成签到,获得积分0
28秒前
zjq发布了新的文献求助10
28秒前
Akim应助寒冷的云朵采纳,获得10
29秒前
31秒前
32秒前
孟婆婆的鸡汤完成签到,获得积分10
33秒前
Lulu完成签到 ,获得积分10
33秒前
pphu发布了新的文献求助100
34秒前
35秒前
36秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509144
求助须知:如何正确求助?哪些是违规求助? 4604163
关于积分的说明 14489285
捐赠科研通 4538831
什么是DOI,文献DOI怎么找? 2487198
邀请新用户注册赠送积分活动 1469617
关于科研通互助平台的介绍 1441838