Contribution of whole slide imaging‐based deep learning in the assessment of intraoperative and postoperative sections in neuropathology

H&E染色 医学 星形细胞瘤 病理 医学诊断 染色 放射科 核医学 人工智能 计算机科学 胶质瘤 癌症研究
作者
Liting Shi,Lin Shen,Junming Jian,Wei Xia,Keda Yang,Yifu Tian,Jianghai Huang,Bowen Yuan,Liangfang Shen,Zhengzheng Liu,Jiayi Zhang,Rui Zhang,Keqing Wu,Di Jing,Xin Gao
出处
期刊:Brain Pathology [Wiley]
卷期号:33 (4) 被引量:3
标识
DOI:10.1111/bpa.13160
摘要

Abstract The pathological diagnosis of intracranial germinoma (IG), oligodendroglioma, and low‐grade astrocytoma on intraoperative frozen section (IFS) and hematoxylin–eosin (HE)‐staining section directly determines patients' treatment options, but it is a difficult task for pathologists. We aimed to investigate whether whole‐slide imaging (WSI)‐based deep learning can contribute new precision to the diagnosis of IG, oligodendroglioma, and low‐grade astrocytoma. Two types of WSIs (500 IFSs and 832 HE‐staining sections) were collected from 379 patients at multiple medical centers. Patients at Center 1 were split into the training, testing, and internal validation sets (3:1:1), while the other centers were the external validation sets. First, we subdivided WSIs into small tiles and selected tissue tiles using a tissue tile selection model. Then a tile‐level classification model was established, and the majority voting method was used to determine the final diagnoses. Color jitter was applied to the tiles so that the deep learning (DL) models could adapt to the variations in the staining. Last, we investigated the effectiveness of model assistance. The internal validation accuracies of the IFS and HE models were 93.9% and 95.3%, respectively. The external validation accuracies of the IFS and HE models were 82.0% and 76.9%, respectively. Furthermore, the IFS and HE models can predict Ki‐67 positive cell areas with R 2 of 0.81 and 0.86, respectively. With model assistance, the IFS and HE diagnosis accuracy of pathologists improved from 54.6%–69.7% and 53.5%–83.7% to 87.9%–93.9% and 86.0%–90.7%, respectively. Both the IFS model and the HE model can differentiate the three tumors, predict the expression of Ki‐67, and improve the diagnostic accuracy of pathologists. The use of our model can assist clinicians in providing patients with optimal and timely treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
鞋鞋完成签到,获得积分10
1秒前
1秒前
z3Q应助泥嚎采纳,获得10
1秒前
2秒前
wz发布了新的文献求助10
2秒前
好气哦发布了新的文献求助10
3秒前
Sakura发布了新的文献求助10
4秒前
Lily完成签到,获得积分10
4秒前
睡洋洋完成签到,获得积分10
4秒前
小刘发布了新的文献求助10
4秒前
干净语兰关注了科研通微信公众号
5秒前
务实大神发布了新的文献求助10
5秒前
zzz完成签到 ,获得积分10
5秒前
pe发布了新的文献求助30
5秒前
小熊发布了新的文献求助30
5秒前
田様应助南宫臻采纳,获得10
6秒前
圈哥完成签到 ,获得积分10
6秒前
xiaoou发布了新的文献求助10
6秒前
6秒前
6秒前
景穆完成签到,获得积分10
8秒前
Lily发布了新的文献求助10
8秒前
布布爱吃炸鸡完成签到,获得积分10
8秒前
9秒前
9秒前
踏实的从波完成签到,获得积分10
10秒前
her完成签到,获得积分10
10秒前
11秒前
爆米花应助doubles采纳,获得30
11秒前
鲤鱼灵竹应助健康的芒果采纳,获得30
11秒前
11秒前
藤大阳发布了新的文献求助10
11秒前
12秒前
清脆秋翠发布了新的文献求助10
12秒前
无情的傲玉完成签到,获得积分10
12秒前
13秒前
快乐的雨竹完成签到,获得积分10
13秒前
14秒前
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Analytical Model of Threshold Voltage for Narrow Width Metal Oxide Semiconductor Field Effect Transistors 350
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309200
求助须知:如何正确求助?哪些是违规求助? 2942533
关于积分的说明 8509490
捐赠科研通 2617712
什么是DOI,文献DOI怎么找? 1430268
科研通“疑难数据库(出版商)”最低求助积分说明 664108
邀请新用户注册赠送积分活动 649272