Contribution of whole slide imaging‐based deep learning in the assessment of intraoperative and postoperative sections in neuropathology

H&E染色 医学 星形细胞瘤 病理 医学诊断 染色 放射科 核医学 人工智能 计算机科学 胶质瘤 癌症研究
作者
Liting Shi,Lin Shen,Junming Jian,Wei Xia,Keda Yang,Yifu Tian,Jianghai Huang,Bowen Yuan,Liangfang Shen,Zhengzheng Liu,Jiayi Zhang,Rui Zhang,Keqing Wu,Di Jing,Xin Gao
出处
期刊:Brain Pathology [Wiley]
卷期号:33 (4) 被引量:3
标识
DOI:10.1111/bpa.13160
摘要

Abstract The pathological diagnosis of intracranial germinoma (IG), oligodendroglioma, and low‐grade astrocytoma on intraoperative frozen section (IFS) and hematoxylin–eosin (HE)‐staining section directly determines patients' treatment options, but it is a difficult task for pathologists. We aimed to investigate whether whole‐slide imaging (WSI)‐based deep learning can contribute new precision to the diagnosis of IG, oligodendroglioma, and low‐grade astrocytoma. Two types of WSIs (500 IFSs and 832 HE‐staining sections) were collected from 379 patients at multiple medical centers. Patients at Center 1 were split into the training, testing, and internal validation sets (3:1:1), while the other centers were the external validation sets. First, we subdivided WSIs into small tiles and selected tissue tiles using a tissue tile selection model. Then a tile‐level classification model was established, and the majority voting method was used to determine the final diagnoses. Color jitter was applied to the tiles so that the deep learning (DL) models could adapt to the variations in the staining. Last, we investigated the effectiveness of model assistance. The internal validation accuracies of the IFS and HE models were 93.9% and 95.3%, respectively. The external validation accuracies of the IFS and HE models were 82.0% and 76.9%, respectively. Furthermore, the IFS and HE models can predict Ki‐67 positive cell areas with R 2 of 0.81 and 0.86, respectively. With model assistance, the IFS and HE diagnosis accuracy of pathologists improved from 54.6%–69.7% and 53.5%–83.7% to 87.9%–93.9% and 86.0%–90.7%, respectively. Both the IFS model and the HE model can differentiate the three tumors, predict the expression of Ki‐67, and improve the diagnostic accuracy of pathologists. The use of our model can assist clinicians in providing patients with optimal and timely treatment options.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助vexille采纳,获得20
刚刚
青梨完成签到 ,获得积分10
2秒前
da_line应助U9A采纳,获得10
4秒前
4秒前
酷波er应助李朝朝采纳,获得10
5秒前
6秒前
jialinzhou完成签到,获得积分10
7秒前
彭于晏完成签到,获得积分10
8秒前
9秒前
10秒前
丘比特应助mm采纳,获得10
11秒前
共享精神应助不要加糖采纳,获得10
11秒前
Autism完成签到,获得积分10
11秒前
11秒前
sunlanglang发布了新的文献求助10
11秒前
乐乐应助心灵美复天采纳,获得10
12秒前
12秒前
12秒前
YamDaamCaa应助xlxl采纳,获得30
14秒前
14秒前
xiaowang发布了新的文献求助10
16秒前
Talha发布了新的文献求助10
17秒前
佘楽发布了新的文献求助10
17秒前
邱邱发布了新的文献求助10
18秒前
18秒前
岁岁平安发布了新的文献求助10
19秒前
雪白的听寒完成签到 ,获得积分10
19秒前
领导范儿应助sunlanglang采纳,获得10
20秒前
彭佳乐发布了新的文献求助10
21秒前
饼藏发布了新的文献求助10
23秒前
Ava应助加油哟采纳,获得10
24秒前
泯工发布了新的文献求助10
25秒前
25秒前
bkagyin应助邱邱采纳,获得10
26秒前
xiaowang完成签到,获得积分10
27秒前
犹豫的寄文完成签到,获得积分20
27秒前
28秒前
Liufgui应助科研通管家采纳,获得10
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967722
求助须知:如何正确求助?哪些是违规求助? 3512889
关于积分的说明 11165380
捐赠科研通 3247919
什么是DOI,文献DOI怎么找? 1794067
邀请新用户注册赠送积分活动 874836
科研通“疑难数据库(出版商)”最低求助积分说明 804578