H&E染色
医学
星形细胞瘤
病理
医学诊断
染色
放射科
核医学
人工智能
计算机科学
胶质瘤
癌症研究
作者
Liting Shi,Lin Shen,Junming Jian,Wei Xia,Keda Yang,Yifu Tian,Jianghai Huang,Bowen Yuan,Liangfang Shen,Zhengzheng Liu,Jiayi Zhang,Rui Zhang,Keqing Wu,Di Jing,Xin Gao
摘要
Abstract The pathological diagnosis of intracranial germinoma (IG), oligodendroglioma, and low‐grade astrocytoma on intraoperative frozen section (IFS) and hematoxylin–eosin (HE)‐staining section directly determines patients' treatment options, but it is a difficult task for pathologists. We aimed to investigate whether whole‐slide imaging (WSI)‐based deep learning can contribute new precision to the diagnosis of IG, oligodendroglioma, and low‐grade astrocytoma. Two types of WSIs (500 IFSs and 832 HE‐staining sections) were collected from 379 patients at multiple medical centers. Patients at Center 1 were split into the training, testing, and internal validation sets (3:1:1), while the other centers were the external validation sets. First, we subdivided WSIs into small tiles and selected tissue tiles using a tissue tile selection model. Then a tile‐level classification model was established, and the majority voting method was used to determine the final diagnoses. Color jitter was applied to the tiles so that the deep learning (DL) models could adapt to the variations in the staining. Last, we investigated the effectiveness of model assistance. The internal validation accuracies of the IFS and HE models were 93.9% and 95.3%, respectively. The external validation accuracies of the IFS and HE models were 82.0% and 76.9%, respectively. Furthermore, the IFS and HE models can predict Ki‐67 positive cell areas with R 2 of 0.81 and 0.86, respectively. With model assistance, the IFS and HE diagnosis accuracy of pathologists improved from 54.6%–69.7% and 53.5%–83.7% to 87.9%–93.9% and 86.0%–90.7%, respectively. Both the IFS model and the HE model can differentiate the three tumors, predict the expression of Ki‐67, and improve the diagnostic accuracy of pathologists. The use of our model can assist clinicians in providing patients with optimal and timely treatment options.
科研通智能强力驱动
Strongly Powered by AbleSci AI