亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Contribution of whole slide imaging‐based deep learning in the assessment of intraoperative and postoperative sections in neuropathology

H&E染色 医学 星形细胞瘤 病理 医学诊断 染色 放射科 核医学 人工智能 计算机科学 胶质瘤 癌症研究
作者
Liting Shi,Lin Shen,Junming Jian,Wei Xia,Keda Yang,Yifu Tian,Jianghai Huang,Bowen Yuan,Liangfang Shen,Zhengzheng Liu,Jiayi Zhang,Rui Zhang,Keqing Wu,Di Jing,Xin Gao
出处
期刊:Brain Pathology [Wiley]
卷期号:33 (4) 被引量:3
标识
DOI:10.1111/bpa.13160
摘要

Abstract The pathological diagnosis of intracranial germinoma (IG), oligodendroglioma, and low‐grade astrocytoma on intraoperative frozen section (IFS) and hematoxylin–eosin (HE)‐staining section directly determines patients' treatment options, but it is a difficult task for pathologists. We aimed to investigate whether whole‐slide imaging (WSI)‐based deep learning can contribute new precision to the diagnosis of IG, oligodendroglioma, and low‐grade astrocytoma. Two types of WSIs (500 IFSs and 832 HE‐staining sections) were collected from 379 patients at multiple medical centers. Patients at Center 1 were split into the training, testing, and internal validation sets (3:1:1), while the other centers were the external validation sets. First, we subdivided WSIs into small tiles and selected tissue tiles using a tissue tile selection model. Then a tile‐level classification model was established, and the majority voting method was used to determine the final diagnoses. Color jitter was applied to the tiles so that the deep learning (DL) models could adapt to the variations in the staining. Last, we investigated the effectiveness of model assistance. The internal validation accuracies of the IFS and HE models were 93.9% and 95.3%, respectively. The external validation accuracies of the IFS and HE models were 82.0% and 76.9%, respectively. Furthermore, the IFS and HE models can predict Ki‐67 positive cell areas with R 2 of 0.81 and 0.86, respectively. With model assistance, the IFS and HE diagnosis accuracy of pathologists improved from 54.6%–69.7% and 53.5%–83.7% to 87.9%–93.9% and 86.0%–90.7%, respectively. Both the IFS model and the HE model can differentiate the three tumors, predict the expression of Ki‐67, and improve the diagnostic accuracy of pathologists. The use of our model can assist clinicians in providing patients with optimal and timely treatment options.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助XIII采纳,获得10
1秒前
5秒前
一只大嵩鼠完成签到 ,获得积分10
8秒前
霸气的忆丹完成签到 ,获得积分10
9秒前
琪yt完成签到,获得积分20
11秒前
12秒前
17秒前
琪yt发布了新的文献求助10
18秒前
20秒前
21秒前
XIII发布了新的文献求助10
26秒前
32秒前
32秒前
wangll发布了新的文献求助10
36秒前
乐乐应助买三个包子吧采纳,获得10
36秒前
二丙发布了新的文献求助10
37秒前
Fan完成签到 ,获得积分10
37秒前
37秒前
果冻完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
38秒前
Nature应助HUGGSY采纳,获得10
41秒前
甜美的傲珊完成签到,获得积分10
44秒前
戴鹿角王冠的拉斯特完成签到,获得积分10
45秒前
二丙完成签到,获得积分10
50秒前
57秒前
希望天下0贩的0应助zzf采纳,获得10
58秒前
酷波er应助wangll采纳,获得10
59秒前
1分钟前
1分钟前
芒果完成签到 ,获得积分10
1分钟前
欢欢发布了新的文献求助10
1分钟前
zzf发布了新的文献求助10
1分钟前
ok完成签到,获得积分10
1分钟前
遇上就这样吧应助ceeray23采纳,获得200
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
香蕉觅云应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
炙热的雪糕完成签到,获得积分10
1分钟前
1分钟前
zzf完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664066
求助须知:如何正确求助?哪些是违规求助? 4857165
关于积分的说明 15107066
捐赠科研通 4822504
什么是DOI,文献DOI怎么找? 2581501
邀请新用户注册赠送积分活动 1535723
关于科研通互助平台的介绍 1493949