作者
Jianyou Zhang,Linfeng Fei,Pengbo Cui,Noman Walayat,Shengqiang Ji,Yi‐Ling Chen,Fei Lyu,Yuting Ding
摘要
The effect of low voltage electrostatic field combined with partial freezing (LVEF- PF) treatment on storage quality and microbial community of large yellow croaker was studied. Three different methods including chilled (C), partial freezing (PF) and 6 kV/m electrostatic field combined partial freezing storage were used to preserve large yellow croaker for 18 days. Total viable counts (TVC), sensory evaluation, and physiochemical index including pH, total volatile basic nitrogen (TVB-N), K value and centrifugal loss were examined. During storage, the large yellow croaker was susceptible to microbial growth and spoilage. However, LVEF-PF treatment was found to be effective in enhancing sensory quality, inhibiting microbial growth, and maintaining myofibril microstructure. Low field nuclear magnetic resonance showed that LVEF-PF treatment reduced the migration of immobilized water to free water. At 18th day, the TVC value of LVEF-PF, PF and chilled group were 3.56 log CFU/g, 5.11 log CFU/g, 7.73 log CFU/g, respectively. Therefore, from the results of TVB-N and TVC value, the shelf life of LVEF-PF group was at least 3 days longer than PF group, and 6 days longer than the chilled group. High-throughput sequencing showed that the microbial community diversity significantly decreased during storage. The predominant bacteria in chilled, PF, LVEF-PF group at 18th day were Pseudomonas, Psychrobacter and Shewanella, respectively, and the relative abundance of spoilage bacteria such as Pseudomonas and Psychrobacter were reduced by LVEF-PF treatment, that corresponding with lower values of TVB-N and TVC value. LVEF-PF treatment could be used as a new processing and storage method to delay deterioration and prolong shelf life of large yellow croaker.