Selenium Substitution in Bithiophene Imide Polymer Semiconductors Enables High‐Performance n‐Type Organic Thermoelectric

材料科学 聚合物 热电效应 热电材料 兴奋剂 酰亚胺 电导率 硫黄 替代(逻辑) 轨道能级差 电阻率和电导率 化学工程 高分子化学 有机化学 物理化学 光电子学 复合材料 分子 热导率 化学 冶金 电气工程 热力学 物理 计算机科学 程序设计语言 工程类
作者
Jianfeng Li,Min Liu,Kun Yang,Yimei Wang,Junwei Wang,Zhicai Chen,Kui Feng,Dong Wang,Jianqi Zhang,Yongchun Li,Han Guo,Zhixiang Wei,Xugang Guo
出处
期刊:Advanced Functional Materials [Wiley]
卷期号:33 (23) 被引量:21
标识
DOI:10.1002/adfm.202213911
摘要

Abstract Designing n ‐type polymers with high electrical conductivity remains a major challenge for organic thermoelectrics (OTEs). Herein, by devising a novel selenophene‐based electron‐deficient building block, the pronounced advantages of selenium substitution in simultaneously enabling advanced n ‐type polymers is demonstrated with high mobility (≈2 orders of magnitude higher versus their sulfur‐based analogues due to both intensified intra‐ and inter‐chain interactions) and much improved n ‐doping efficiency (enabled by the largely lowered LUMO level with a ≈0.2 eV margin) of the resulting polymers. Via side chain optimization and donor engineering, the selenium‐substituted polymer, f‐BSeI2TEG‐FT, achieves a highest conductivity of 103.5 S cm −1 and power factor of 70.1 µW m −1 K −2 , which are among the highest values reported in literature for n ‐type polymers, and f‐BSeI2TEG‐FT greatly outperformed the sulfur‐based analogue polymer by 40% conductivity increase. These results demonstrate that selenium substitution is a very effective strategy for improving n ‐type performance and provide important structure‐property correlations for developing high‐performing n ‐type OTE materials.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮又晴发布了新的文献求助10
刚刚
温暖白容完成签到 ,获得积分10
1秒前
edtaa发布了新的文献求助10
1秒前
1秒前
hhh完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
YaHaa发布了新的文献求助10
3秒前
健忘的自行车完成签到,获得积分20
3秒前
dreamer1989发布了新的文献求助10
4秒前
沉静梦曼完成签到 ,获得积分10
4秒前
安屿完成签到 ,获得积分10
5秒前
归仔完成签到,获得积分10
5秒前
5秒前
Orange应助李丽采纳,获得10
6秒前
认真初之发布了新的文献求助30
6秒前
王大力完成签到,获得积分10
6秒前
传奇3应助务实雪珍采纳,获得10
6秒前
刘丰铭发布了新的文献求助10
7秒前
1234完成签到,获得积分10
7秒前
BowieHuang应助震动的高烽采纳,获得10
7秒前
7秒前
自然黄豆发布了新的文献求助10
7秒前
555完成签到,获得积分20
7秒前
完美世界应助喜悦一德采纳,获得10
7秒前
yqsf789发布了新的文献求助10
7秒前
洪亭完成签到 ,获得积分10
8秒前
左左蕊完成签到 ,获得积分10
8秒前
嘉博学长完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
万能图书馆应助edtaa采纳,获得10
9秒前
9秒前
斯文败类应助Leon采纳,获得10
10秒前
wenchong完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836