材料科学
聚合物
热电效应
热电材料
兴奋剂
硒
酰亚胺
电导率
硫黄
替代(逻辑)
轨道能级差
电阻率和电导率
化学工程
高分子化学
有机化学
物理化学
光电子学
复合材料
分子
热导率
化学
冶金
电气工程
热力学
工程类
物理
程序设计语言
计算机科学
作者
Jianfeng Li,Min Liu,Kun Yang,Yimei Wang,Junwei Wang,Zhicai Chen,Kui Feng,Dong Wang,Jianqi Zhang,Yongchun Li,Han Guo,Zhixiang Wei,Xugang Guo
标识
DOI:10.1002/adfm.202213911
摘要
Abstract Designing n ‐type polymers with high electrical conductivity remains a major challenge for organic thermoelectrics (OTEs). Herein, by devising a novel selenophene‐based electron‐deficient building block, the pronounced advantages of selenium substitution in simultaneously enabling advanced n ‐type polymers is demonstrated with high mobility (≈2 orders of magnitude higher versus their sulfur‐based analogues due to both intensified intra‐ and inter‐chain interactions) and much improved n ‐doping efficiency (enabled by the largely lowered LUMO level with a ≈0.2 eV margin) of the resulting polymers. Via side chain optimization and donor engineering, the selenium‐substituted polymer, f‐BSeI2TEG‐FT, achieves a highest conductivity of 103.5 S cm −1 and power factor of 70.1 µW m −1 K −2 , which are among the highest values reported in literature for n ‐type polymers, and f‐BSeI2TEG‐FT greatly outperformed the sulfur‐based analogue polymer by 40% conductivity increase. These results demonstrate that selenium substitution is a very effective strategy for improving n ‐type performance and provide important structure‐property correlations for developing high‐performing n ‐type OTE materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI