计算机科学
体验质量
节点(物理)
利用
资源配置
服务质量
匹配(统计)
计算机网络
分布式计算
公制(单位)
GSM演进的增强数据速率
任务(项目管理)
数据聚合器
Blossom算法
服务(商务)
资源管理(计算)
方案(数学)
边缘计算
无线传感器网络
人工智能
数学分析
统计
运营管理
计算机安全
数学
结构工程
管理
经济
工程类
经济
作者
Wanning Liu,Yitao Xu,Ducheng Wu,Haichao Wang,Xiaojing Chu,Yifan Xu
标识
DOI:10.1109/iccc56324.2022.10065777
摘要
This paper investigates the data aggregation problem in a multi-layer mobile edge computing (MEC)-enabled unmanned aerial vehicle (UAV) systems. When UAV users transmit data to the central operator node for analysis and processing, MEC is a promising paradigm to provide low-delay service for user applications. For UAV users, the quality of experience (QoE) metric can facilitate them to receive more satisfying services according to different task requirements. In this paper, a QoE-based utility model is proposed to guarantee the service quality of each user-layer UAV. Note that in the multi-layer aggregation framework, there are three types of UAVs, e.g., users, helpers, and central operator. Then, an optimization problem is formulated to improve the QoE of users and reduce the cost simultaneously. And the optimization variables are aggregate node selection and resource allocation. Next, we exploit a low complexity matching game method to complete the selection of aggregation nodes and fair resource allocation, e.g., virtual machine (VM) resources. The simulation results demonstrate that the proposed scheme is superior to other traditional schemes.
科研通智能强力驱动
Strongly Powered by AbleSci AI