Compressive Sensing via Variational Bayesian Inference under Two Widely Used Priors: Modeling, Comparison and Discussion

压缩传感 贝叶斯推理 先验概率 计算机科学 反问题 贝叶斯概率 信号重构 推论 信号(编程语言) 人工智能 高斯分布 算法 机器学习 信号处理 数学 物理 数学分析 雷达 电信 量子力学 程序设计语言
作者
Mohammad Shekaramiz,Todd K. Moon
出处
期刊:Entropy [Multidisciplinary Digital Publishing Institute]
卷期号:25 (3): 511-511
标识
DOI:10.3390/e25030511
摘要

Compressive sensing is a sub-Nyquist sampling technique for efficient signal acquisition and reconstruction of sparse or compressible signals. In order to account for the sparsity of the underlying signal of interest, it is common to use sparsifying priors such as Bernoulli–Gaussian-inverse Gamma (BGiG) and Gaussian-inverse Gamma (GiG) priors on the components of the signal. With the introduction of variational Bayesian inference, the sparse Bayesian learning (SBL) methods for solving the inverse problem of compressive sensing have received significant interest as the SBL methods become more efficient in terms of execution time. In this paper, we consider the sparse signal recovery problem using compressive sensing and the variational Bayesian (VB) inference framework. More specifically, we consider two widely used Bayesian models of BGiG and GiG for modeling the underlying sparse signal for this problem. Although these two models have been widely used for sparse recovery problems under various signal structures, the question of which model can outperform the other for sparse signal recovery under no specific structure has yet to be fully addressed under the VB inference setting. Here, we study these two models specifically under VB inference in detail, provide some motivating examples regarding the issues in signal reconstruction that may occur under each model, perform comparisons and provide suggestions on how to improve the performance of each model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
文小武完成签到,获得积分10
1秒前
DQ发布了新的文献求助10
1秒前
2秒前
hh完成签到,获得积分10
2秒前
3秒前
Hu完成签到,获得积分10
4秒前
研友_VZG7GZ应助yxlao采纳,获得10
4秒前
江姜发布了新的文献求助10
4秒前
5秒前
7秒前
大模型应助vv采纳,获得10
7秒前
zotero发布了新的文献求助10
9秒前
bkagyin应助科研通管家采纳,获得10
10秒前
coolkid应助科研通管家采纳,获得10
10秒前
albertxin发布了新的文献求助10
10秒前
coolkid应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
10秒前
斯文败类应助科研通管家采纳,获得10
10秒前
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
10秒前
鸣笛应助科研通管家采纳,获得30
10秒前
10秒前
coolkid应助科研通管家采纳,获得10
10秒前
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
橘子完成签到,获得积分10
12秒前
13秒前
SYLH应助光明磊落采纳,获得10
13秒前
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350