双酚A
电解质
芳烯
共聚物
锂(药物)
电池(电)
碳酸乙烯酯
电化学
单体
锂离子电池
离子电导率
高分子化学
无机化学
化学工程
材料科学
化学
有机化学
烷基
电极
物理化学
聚合物
环氧树脂
物理
医学
功率(物理)
内分泌学
工程类
量子力学
芳基
作者
Alexander Mayer,Alessandro Mariani,Dong Xu,Grégoire Vansse,Patrick Théato,Cristina Iojoiu,Stefano Passerini,Dominic Bresser
出处
期刊:Macromolecules
[American Chemical Society]
日期:2023-03-17
卷期号:56 (6): 2505-2514
被引量:3
标识
DOI:10.1021/acs.macromol.2c02404
摘要
Poly(arylene ether sulfone)-derived single-ion conducting (SIC) block copolymers are promising candidates as (solid) electrolytes for lithium-metal batteries owing to their high electrochemical stability and structural versatility. When incorporating small organic molecules (e.g., organic carbonates such as ethylene carbonate, EC), high ionic conductivities can be reached even at ambient temperatures. To gain further insights into the impact of the polymer backbone chemistry on the physicochemical and electrochemical properties, a series of SIC multiblock copolymers were synthesized comprising bisphenol-derived monomers for the ionophilic block. All of these SIC block copolymers (containing 55 wt % of EC) show high ionic conductivities. Remarkably, though, the electrochemical stability toward oxidation is slightly decreasing for an increasing size of the substituent at the central carbon atom of the bisphenol monomer, whereas the overpotential for lithium stripping and plating is decreasing. These results highlight the importance of carefully designing the polymer backbone for high-performance lithium battery electrolytes.
科研通智能强力驱动
Strongly Powered by AbleSci AI