Mechanical activation-enhanced doping and defect strategy to construct Fe–S co-doped carbon nitride for efficient photocatalytic tetracycline degradation and hydrogen evolution

光催化 氧化还原 石墨氮化碳 氮化碳 兴奋剂 硫脲 材料科学 降级(电信) 载流子 电子转移 光化学 化学工程 纳米技术 化学 无机化学 催化作用 光电子学 有机化学 工程类 电信 计算机科学
作者
Tongtong Zhang,Xiunan Cai,Xiangxuan Lin,Zhaoming Jiang,Hao Jin,Zuqiang Huang,Tao Gan,Huayu Hu,Yanjuan Zhang
出处
期刊:Separation and Purification Technology [Elsevier]
卷期号:314: 123618-123618 被引量:10
标识
DOI:10.1016/j.seppur.2023.123618
摘要

Achieving a simultaneous increase in the redox performance of carbon nitride (CN) remains a challenge owing to the low utilization efficiency of photogenerated carriers. Herein, a novel "mechanical activation (MA)-enhanced doping and defect" strategy was proposed for structural modification of CN to enhance its performance. Specifically, CN, FeCl3, and thiourea were treated by MA to prepare a precursor with uniform dispersion and anchoring of Fe and S components in CN, and then the MA-treated precursor was calcinated to obtain a Fe–S co-doped CN composite (MA-Fe-S-CN) with abundant N vacancies. Under visible light illumination, MA-Fe-S-CN displayed outstanding photocatalytic performance for tetracycline (TC) removal (92.7%) and hydrogen evolution (2965 µmol g−1h−1) within 120 min, which was 3.3 and 4.1 times higher than those of CN, respectively. The superlative redox performance of MA-Fe-S-CN was attributed to that MA-enhanced Fe–S co-doping and N vacancies effectively modified the built-in electric field, electronic structure, and redox potential of CN. Experimental and theoretical analysis revealed that photogenerated electrons were trapped by N vacancies and directed to Fe active sites through efficient charge transfer channels (Fe–N and Fe–S), resulting in rapid charge transfer and effective separation and utilization of carriers. On this basis, possible mechanisms of photocatalytic TC degradation and hydrogen evolution were proposed. This work provides a green and economically feasible way for improving the redox performance of CN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
善学以致用应助奔奔采纳,获得10
1秒前
2秒前
ding应助张皓123采纳,获得10
4秒前
聪慧雅旋完成签到 ,获得积分10
4秒前
起风了完成签到 ,获得积分10
5秒前
6秒前
6秒前
龙骑士25发布了新的文献求助10
6秒前
聪慧雅旋关注了科研通微信公众号
7秒前
学术通zzz应助ffffan采纳,获得10
8秒前
8秒前
科研通AI2S应助海不扬波采纳,获得10
9秒前
cocolu应助海不扬波采纳,获得10
9秒前
cocolu应助海不扬波采纳,获得10
9秒前
cocolu应助海不扬波采纳,获得10
9秒前
dddlrb完成签到,获得积分10
9秒前
小鱼发布了新的文献求助10
10秒前
欣慰汉堡发布了新的文献求助10
12秒前
dddlrb发布了新的文献求助10
12秒前
13秒前
13秒前
上官若男应助跋扈采纳,获得10
13秒前
今后应助敏er好学采纳,获得10
14秒前
14秒前
yhb发布了新的文献求助10
14秒前
fctlxazn关注了科研通微信公众号
15秒前
年轻水壶完成签到 ,获得积分10
15秒前
Lucas应助允怡采纳,获得10
16秒前
张皓123发布了新的文献求助10
17秒前
葵花籽完成签到,获得积分10
17秒前
18秒前
小谷发布了新的文献求助10
18秒前
18秒前
18秒前
情怀应助ardejiang采纳,获得10
19秒前
wang完成签到,获得积分10
20秒前
Hellowa发布了新的文献求助10
21秒前
Zhouzhou应助欣慰汉堡采纳,获得10
22秒前
22秒前
晚安鸭箫晓完成签到 ,获得积分10
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330222
求助须知:如何正确求助?哪些是违规求助? 2959796
关于积分的说明 8597036
捐赠科研通 2638227
什么是DOI,文献DOI怎么找? 1444215
科研通“疑难数据库(出版商)”最低求助积分说明 669074
邀请新用户注册赠送积分活动 656613