A multi-criteria framework for electric vehicle charging location selection using double hierarchy preferences and unknown weights

计算机科学 选择(遗传算法) 等级制度 电动汽车 层次分析法 人工智能 数据挖掘 运筹学 机器学习 功率(物理) 物理 量子力学 经济 工程类 市场经济
作者
R. Krishankumar,Fatih Ecer
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108251-108251
标识
DOI:10.1016/j.engappai.2024.108251
摘要

The adverse effects of traditional vehicles on the environment increase the demand for clean vehicles, such as electric vehicles (EVs). The correct positioning of the charging points for such vehicles certainly promotes the acceptance and spread of EVs. Indeed, selecting optimal locations for electric vehicle charging stations (EVCS) is crucial for shaping a sustainable future. This study introduces an integrated methodology under a double hierarchy linguistic context with a criteria importance through an inter-criteria correlation (CRITIC) technique for experts' reliability determination, an attitudinal Cronbach's method for criteria weight estimation, and a novel multi-criteria technique considering the compromise ranking of alternatives from distance to ideal solution (CRADIS) formulation for optimal EVCS location selection. Based on the results, criteria such as service capability, ecological impact, land cost, and traffic density are the most crucial, with Manapparai, India, as the optimal location for a new EVCS construction. Further, a crucial finding is that the social dimension is substantial compared to the economy and environment dimensions for EVCS location selection. The novelty of the paper is that (i) uncertainty and expression of choices in natural language form for locations for EVCS are modeled effectively using a double hierarchy structure, (ii) experts' weights are obtained methodically by considering hesitation and interactions among experts, (iii) interdependencies among criteria and importance of experts are considered during criteria weight determination, and (iv) locations are ranked by not only considering criteria type but also resembles closely to the human-centric decision process. A detailed sensitivity analysis is further conducted to prove the proposed approach's effectiveness and stability. In the context of sustainable transportation, the work could contribute to the relevant literature through a powerful decision-making tool.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
刚刚
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
草莓布丁应助科研通管家采纳,获得10
刚刚
砡君应助科研通管家采纳,获得10
刚刚
赘婿应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
慕青应助科研通管家采纳,获得10
刚刚
浮游应助科研通管家采纳,获得10
刚刚
轻松念露发布了新的文献求助50
1秒前
Hello应助大致若鱼采纳,获得10
1秒前
陈锦鲤完成签到,获得积分10
2秒前
2秒前
Jacky举报心悦求助涉嫌违规
2秒前
勤恳的小松鼠完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
玛卡巴卡完成签到,获得积分10
3秒前
斯文败类应助带回家反馈采纳,获得10
3秒前
透明人发布了新的文献求助10
4秒前
科研通AI6应助Lirui2333采纳,获得10
5秒前
5秒前
小宝发布了新的文献求助30
5秒前
5秒前
6秒前
十二完成签到,获得积分10
6秒前
7秒前
身为风帆发布了新的文献求助10
7秒前
mqq完成签到,获得积分10
7秒前
栀鸢完成签到,获得积分10
7秒前
灰灰给灰灰的求助进行了留言
8秒前
充电宝应助倩倩采纳,获得10
8秒前
healer完成签到,获得积分20
9秒前
9秒前
9秒前
cc完成签到,获得积分10
9秒前
10秒前
十二发布了新的文献求助10
11秒前
12秒前
mqq发布了新的文献求助10
12秒前
能干的邹发布了新的文献求助10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469093
求助须知:如何正确求助?哪些是违规求助? 4572269
关于积分的说明 14334781
捐赠科研通 4499079
什么是DOI,文献DOI怎么找? 2464915
邀请新用户注册赠送积分活动 1453452
关于科研通互助平台的介绍 1427997