A multi-criteria framework for electric vehicle charging location selection using double hierarchy preferences and unknown weights

计算机科学 选择(遗传算法) 等级制度 电动汽车 层次分析法 人工智能 数据挖掘 运筹学 机器学习 功率(物理) 市场经济 量子力学 物理 工程类 经济
作者
R. Krishankumar,Fatih Ecer
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108251-108251
标识
DOI:10.1016/j.engappai.2024.108251
摘要

The adverse effects of traditional vehicles on the environment increase the demand for clean vehicles, such as electric vehicles (EVs). The correct positioning of the charging points for such vehicles certainly promotes the acceptance and spread of EVs. Indeed, selecting optimal locations for electric vehicle charging stations (EVCS) is crucial for shaping a sustainable future. This study introduces an integrated methodology under a double hierarchy linguistic context with a criteria importance through an inter-criteria correlation (CRITIC) technique for experts' reliability determination, an attitudinal Cronbach's method for criteria weight estimation, and a novel multi-criteria technique considering the compromise ranking of alternatives from distance to ideal solution (CRADIS) formulation for optimal EVCS location selection. Based on the results, criteria such as service capability, ecological impact, land cost, and traffic density are the most crucial, with Manapparai, India, as the optimal location for a new EVCS construction. Further, a crucial finding is that the social dimension is substantial compared to the economy and environment dimensions for EVCS location selection. The novelty of the paper is that (i) uncertainty and expression of choices in natural language form for locations for EVCS are modeled effectively using a double hierarchy structure, (ii) experts' weights are obtained methodically by considering hesitation and interactions among experts, (iii) interdependencies among criteria and importance of experts are considered during criteria weight determination, and (iv) locations are ranked by not only considering criteria type but also resembles closely to the human-centric decision process. A detailed sensitivity analysis is further conducted to prove the proposed approach's effectiveness and stability. In the context of sustainable transportation, the work could contribute to the relevant literature through a powerful decision-making tool.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
核桃发布了新的文献求助10
1秒前
lidinf发布了新的文献求助10
1秒前
yangbo666发布了新的文献求助10
2秒前
蜜桃乌龙完成签到,获得积分20
2秒前
zhuyanqi完成签到,获得积分10
3秒前
3秒前
xy完成签到,获得积分10
4秒前
QQQ11发布了新的文献求助10
4秒前
ANCY发布了新的文献求助30
4秒前
cc发布了新的文献求助10
5秒前
111发布了新的文献求助10
5秒前
5秒前
科研通AI6应助可爱的芷云采纳,获得10
5秒前
wencan发布了新的文献求助10
6秒前
7秒前
糖焗小馒头完成签到,获得积分10
7秒前
优美凡白发布了新的文献求助10
7秒前
无花果应助li采纳,获得10
8秒前
雪白依云完成签到,获得积分10
8秒前
10秒前
10秒前
11秒前
clearlove发布了新的文献求助10
12秒前
辛勤寻凝发布了新的文献求助10
13秒前
爆米花应助111采纳,获得10
13秒前
淡然胡萝卜完成签到,获得积分10
14秒前
Xbox完成签到,获得积分10
14秒前
喵小喵完成签到,获得积分10
15秒前
15秒前
乐乐应助Accepted采纳,获得10
15秒前
zoe发布了新的文献求助10
16秒前
Mic应助yangbo666采纳,获得10
17秒前
菠萝发布了新的文献求助10
18秒前
19秒前
小鱼头发布了新的文献求助10
19秒前
lan完成签到 ,获得积分10
20秒前
直率鼠标完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656628
求助须知:如何正确求助?哪些是违规求助? 4804442
关于积分的说明 15076544
捐赠科研通 4814884
什么是DOI,文献DOI怎么找? 2576051
邀请新用户注册赠送积分活动 1531356
关于科研通互助平台的介绍 1489936