Personalizing Patient Risk of a Life Altering Event: An Application of Machine Learning to Hemiarch Surgery

事件(粒子物理) 医学 计算机科学 量子力学 物理
作者
Adam Carroll,Nicolas Chanes,Ananya Shah,Lance Dzubinski,Muhammad Aftab,T. Brett Reece
出处
期刊:The Journal of Thoracic and Cardiovascular Surgery [American Association for Thoracic Surgery]
标识
DOI:10.1016/j.jtcvs.2024.04.022
摘要

To assess a machine learning model's ability to predict the occurrence of life altering events (LAE) in hemiarch surgery and determine contributing patient characteristics and intraoperative factors.In total, 602 patients who underwent hemiarch replacement at a high-volume, aortic center from 2009-2022 were included. Patients were randomly divided into training (80%) and testing (20%) sets with various eXtreme gradient boosting (XGBoost) candidate models constructed to predict the risk of experiencing LAE, including stroke, mortality, or new renal replacement therapy requirement. 64 input parameters from the index hospitalization were identified, including 24 demographic characteristics as well as 8 pre-operative and 32 intra-operative variables. A SHapley Additive exPlanation (SHAP) beeswarm plot was generated to identify and interpret the impact of individual features on the predictions of the final model.A LAE was noted in 15% (90/602) of patients who underwent hemiarch replacement, including urgent/emergent cases and dissections. The final XGBoost model demonstrated a cross-validation accuracy of 88% on the testing set and was well-calibrated as evidenced by a low Brier score of 0.12. The best performing model achieved an area under the receiver-operating characteristic curve of 0.76 and an area under the precision-recall curve of 0.55. The SHAP beeswarm plot provided insights into key features that significantly influenced model prediction.Machine learning demonstrated superior accuracy in predicting hemiarch patients that would experience a LAE. This model may help to guide patients and clinicians in stratifying risk on an individual basis, which may in turn influence clinical decision-making.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助无语的怜梦采纳,获得10
刚刚
1秒前
1秒前
顾矜应助Cynthia采纳,获得10
2秒前
共享精神应助小喻采纳,获得10
3秒前
怎么可能会凉完成签到 ,获得积分10
3秒前
花花发布了新的文献求助20
3秒前
义气凡霜发布了新的文献求助10
3秒前
Lucas应助原子采纳,获得10
3秒前
3秒前
mera完成签到,获得积分10
4秒前
pluto应助云云采纳,获得30
4秒前
5秒前
6秒前
王SQ完成签到,获得积分10
6秒前
JamesPei应助朴素的海莲采纳,获得10
6秒前
7秒前
xxpph发布了新的文献求助10
7秒前
眼睛大的向薇完成签到,获得积分10
7秒前
舒适的平蓝完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
aaaaaa完成签到,获得积分10
9秒前
9秒前
沙不凡发布了新的文献求助10
10秒前
10秒前
11秒前
哇咔咔完成签到,获得积分10
11秒前
Tink完成签到,获得积分10
11秒前
12秒前
12秒前
文静三颜发布了新的文献求助10
13秒前
小岛发布了新的文献求助30
13秒前
Doublelin发布了新的文献求助10
14秒前
兽行灵者发布了新的文献求助10
14秒前
平常幼菱完成签到,获得积分10
15秒前
15秒前
momo完成签到 ,获得积分10
17秒前
17秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459163
求助须知:如何正确求助?哪些是违规求助? 3053710
关于积分的说明 9037991
捐赠科研通 2742977
什么是DOI,文献DOI怎么找? 1504606
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694663