Statistical modeling and denoising of microseismic signal for dropping ambient noise in wavelet domain

微震 小波 降噪 噪音(视频) 信号(编程语言) 计算机科学 声学 人工智能 地质学 物理 地震学 图像(数学) 程序设计语言
作者
Kyong-Il Kim,Myong-Il Pak
出处
期刊:International Journal of Wavelets, Multiresolution and Information Processing [World Scientific]
卷期号:22 (05)
标识
DOI:10.1142/s0219691324500115
摘要

Dropping the ambient noise from microseismic signals is very important for disaster monitoring such as a rockburst and early warning system using microseismic monitoring techniques in the mine and coal mines. Currently, it is still a challenge to remove high and low-frequency noise simultaneously without losing the useful information of microseismic signal. The aim of this paper is to remove the low-frequency noise contained in microseismic signal effectively, while preserving the useful signal information by using a stochastic approach. We first statistically model the wavelet coefficients in the approximation subband of noisy microseismic signal. In addition, we evaluate qualitatively and quantitatively the fitness of Gauss–Laplace mixture distribution and the statistical modeling of data. Then, we propose a novel denoising algorithm to remove the ambient noise effectively from the noisy microseismic signals in wavelet domain. This algorithm removes the low-frequency noise by using a stochastic approach and the high-frequency noise by using a traditional wavelet thresholding method. The low-frequency noise is removed by using a closed-form shrinkage function based on Gauss–Laplace mixture distribution, while the high-frequency noise is removed by using a threshold function combined with Garrote and hyperbolic threshold functions. Next, we evaluated the ambient denoising performance of our novel denoising algorithm by comparing it with various denoising methods with different test signals. Experimental results show that the ambient denoising performance of the proposed method is better than the other seven existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moo5_zzZ发布了新的文献求助30
刚刚
我是大皇帝完成签到,获得积分10
1秒前
领导范儿应助简简简采纳,获得30
2秒前
小H完成签到 ,获得积分10
3秒前
深情安青应助QX采纳,获得10
4秒前
4秒前
4秒前
小蘑菇应助Ambt丨on采纳,获得10
5秒前
5秒前
仂尤完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
shuixingji完成签到,获得积分20
7秒前
Modric发布了新的文献求助10
8秒前
周子博完成签到,获得积分10
8秒前
sun完成签到 ,获得积分10
8秒前
研友_VZG7GZ应助小夏采纳,获得10
8秒前
9秒前
Mint应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
大模型应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
浮游应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
13秒前
Tourist应助科研通管家采纳,获得10
13秒前
等待吐司应助科研通管家采纳,获得10
13秒前
Tourist应助科研通管家采纳,获得10
13秒前
英姑应助科研通管家采纳,获得10
13秒前
glzhou1975发布了新的文献求助10
13秒前
8R60d8应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
lucky七禾页完成签到,获得积分20
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
科目三应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
orixero应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5298441
求助须知:如何正确求助?哪些是违规求助? 4446944
关于积分的说明 13841126
捐赠科研通 4332352
什么是DOI,文献DOI怎么找? 2378131
邀请新用户注册赠送积分活动 1373367
关于科研通互助平台的介绍 1338964