Statistical modeling and denoising of microseismic signal for dropping ambient noise in wavelet domain

微震 小波 降噪 噪音(视频) 信号(编程语言) 计算机科学 声学 人工智能 地质学 物理 地震学 图像(数学) 程序设计语言
作者
Kyong-Il Kim,Myong-Il Pak
出处
期刊:International Journal of Wavelets, Multiresolution and Information Processing [World Scientific]
卷期号:22 (05)
标识
DOI:10.1142/s0219691324500115
摘要

Dropping the ambient noise from microseismic signals is very important for disaster monitoring such as a rockburst and early warning system using microseismic monitoring techniques in the mine and coal mines. Currently, it is still a challenge to remove high and low-frequency noise simultaneously without losing the useful information of microseismic signal. The aim of this paper is to remove the low-frequency noise contained in microseismic signal effectively, while preserving the useful signal information by using a stochastic approach. We first statistically model the wavelet coefficients in the approximation subband of noisy microseismic signal. In addition, we evaluate qualitatively and quantitatively the fitness of Gauss–Laplace mixture distribution and the statistical modeling of data. Then, we propose a novel denoising algorithm to remove the ambient noise effectively from the noisy microseismic signals in wavelet domain. This algorithm removes the low-frequency noise by using a stochastic approach and the high-frequency noise by using a traditional wavelet thresholding method. The low-frequency noise is removed by using a closed-form shrinkage function based on Gauss–Laplace mixture distribution, while the high-frequency noise is removed by using a threshold function combined with Garrote and hyperbolic threshold functions. Next, we evaluated the ambient denoising performance of our novel denoising algorithm by comparing it with various denoising methods with different test signals. Experimental results show that the ambient denoising performance of the proposed method is better than the other seven existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助莴苣采纳,获得10
1秒前
小鬼完成签到 ,获得积分10
1秒前
ddsyg126完成签到,获得积分10
1秒前
Cherie完成签到,获得积分10
1秒前
ll完成签到,获得积分20
1秒前
追寻盈完成签到,获得积分10
1秒前
无限夏云完成签到,获得积分10
2秒前
jiujiuhuang完成签到,获得积分10
3秒前
3秒前
晒晒太阳的小猪完成签到,获得积分10
4秒前
duj622完成签到,获得积分10
4秒前
朵朵完成签到,获得积分10
4秒前
Wwang完成签到,获得积分10
4秒前
阿斯顿发布了新的文献求助30
4秒前
Akun完成签到,获得积分10
5秒前
Denny完成签到,获得积分10
5秒前
朴实丹琴完成签到 ,获得积分10
5秒前
6秒前
香蕉觅云应助Lei采纳,获得10
6秒前
6秒前
6秒前
简单馒头完成签到,获得积分10
7秒前
轻松叫兽完成签到,获得积分10
7秒前
朴实丹琴关注了科研通微信公众号
8秒前
清风完成签到 ,获得积分10
8秒前
科研通AI5应助吴晓英采纳,获得10
8秒前
hc完成签到,获得积分20
8秒前
zys0421完成签到,获得积分10
8秒前
lynn发布了新的文献求助10
8秒前
Weiwei应助哦豁采纳,获得10
9秒前
9秒前
科研通AI5应助maomao采纳,获得30
9秒前
浮游应助自由秋荷采纳,获得10
9秒前
美好寒梦完成签到,获得积分10
10秒前
10秒前
李健应助莴苣采纳,获得10
11秒前
水月完成签到,获得积分10
11秒前
11秒前
geold完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4571205
求助须知:如何正确求助?哪些是违规求助? 3992388
关于积分的说明 12357887
捐赠科研通 3665364
什么是DOI,文献DOI怎么找? 2020042
邀请新用户注册赠送积分活动 1054379
科研通“疑难数据库(出版商)”最低求助积分说明 941973