亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DockingGA: enhancing targeted molecule generation using transformer neural network and genetic algorithm with docking simulation

生物 对接(动物) 人工神经网络 计算生物学 变压器 算法 人工智能 计算机科学 工程类 电气工程 医学 护理部 电压
作者
Changnan Gao,W.Y. Bao,Shuang Wang,Jianyang Zheng,Lulu Wang,Yongqi Ren,Linfang Jiao,Jianmin Wang,Xun Wang
出处
期刊:Briefings in Functional Genomics [Oxford University Press]
卷期号:23 (5): 595-606 被引量:4
标识
DOI:10.1093/bfgp/elae011
摘要

Generative molecular models generate novel molecules with desired properties by searching chemical space. Traditional combinatorial optimization methods, such as genetic algorithms, have demonstrated superior performance in various molecular optimization tasks. However, these methods do not utilize docking simulation to inform the design process, and heavy dependence on the quality and quantity of available data, as well as require additional structural optimization to become candidate drugs. To address this limitation, we propose a novel model named DockingGA that combines Transformer neural networks and genetic algorithms to generate molecules with better binding affinity for specific targets. In order to generate high quality molecules, we chose the Self-referencing Chemical Structure Strings to represent the molecule and optimize the binding affinity of the molecules to different targets. Compared to other baseline models, DockingGA proves to be the optimal model in all docking results for the top 1, 10 and 100 molecules, while maintaining 100% novelty. Furthermore, the distribution of physicochemical properties demonstrates the ability of DockingGA to generate molecules with favorable and appropriate properties. This innovation creates new opportunities for the application of generative models in practical drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_Lk9Y9Z完成签到,获得积分10
11秒前
顺顺完成签到 ,获得积分10
21秒前
outlast完成签到,获得积分20
31秒前
39秒前
52秒前
52秒前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
CHRIS发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
烟花应助科研通管家采纳,获得30
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
小雨点完成签到 ,获得积分10
2分钟前
CHRIS完成签到,获得积分10
2分钟前
滕皓轩完成签到 ,获得积分20
3分钟前
比比谁的速度快应助swayqur采纳,获得30
3分钟前
SciGPT应助jinoir采纳,获得10
3分钟前
4分钟前
4分钟前
jinoir发布了新的文献求助10
4分钟前
YYY发布了新的文献求助10
4分钟前
成就大白菜真实的钥匙完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
duanjun123完成签到,获得积分10
5分钟前
Demi_Ming完成签到,获得积分10
5分钟前
duanjun123发布了新的文献求助20
5分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015140
求助须知:如何正确求助?哪些是违规求助? 3555113
关于积分的说明 11317861
捐赠科研通 3288577
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887869
科研通“疑难数据库(出版商)”最低求助积分说明 811983