生物
对接(动物)
人工神经网络
计算生物学
变压器
算法
人工智能
计算机科学
工程类
电气工程
医学
护理部
电压
作者
Changnan Gao,W.Y. Bao,Shuang Wang,Jianyang Zheng,Lulu Wang,Yongqi Ren,Linfang Jiao,Jianmin Wang,Xun Wang
出处
期刊:Briefings in Functional Genomics
[Oxford University Press]
日期:2024-04-06
卷期号:23 (5): 595-606
被引量:2
摘要
Generative molecular models generate novel molecules with desired properties by searching chemical space. Traditional combinatorial optimization methods, such as genetic algorithms, have demonstrated superior performance in various molecular optimization tasks. However, these methods do not utilize docking simulation to inform the design process, and heavy dependence on the quality and quantity of available data, as well as require additional structural optimization to become candidate drugs. To address this limitation, we propose a novel model named DockingGA that combines Transformer neural networks and genetic algorithms to generate molecules with better binding affinity for specific targets. In order to generate high quality molecules, we chose the Self-referencing Chemical Structure Strings to represent the molecule and optimize the binding affinity of the molecules to different targets. Compared to other baseline models, DockingGA proves to be the optimal model in all docking results for the top 1, 10 and 100 molecules, while maintaining 100% novelty. Furthermore, the distribution of physicochemical properties demonstrates the ability of DockingGA to generate molecules with favorable and appropriate properties. This innovation creates new opportunities for the application of generative models in practical drug discovery.
科研通智能强力驱动
Strongly Powered by AbleSci AI