Constructing lactylation-related genes prognostic model to effectively predict the disease-free survival and treatment responsiveness in prostate cancer based on machine learning

列线图 比例危险模型 肿瘤科 前列腺癌 内科学 基因 疾病 生存分析 Lasso(编程语言) 生物 计算生物学 癌症 生物信息学 医学 计算机科学 遗传学 万维网
作者
Jinyou Pan,Jianpeng Zhang,Jingwei Lin,Yiyang Cai,Zhigang Zhao
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:15
标识
DOI:10.3389/fgene.2024.1343140
摘要

Background: Prostate cancer (PCa) is one of the most common malignancies in men with a poor prognosis. It is therefore of great clinical importance to find reliable prognostic indicators for PCa. Many studies have revealed the pivotal role of protein lactylation in tumor development and progression. This research aims to analyze the effect of lactylation-related genes on PCa prognosis. Methods: By downloading mRNA-Seq data of TCGA PCa, we obtained the differential genes related to lactylation in PCa. Five machine learning algorithms were used to screen for lactylation-related key genes for PCa, then the five overlapping key genes were used to construct a survival prognostic model by lasso cox regression analysis. Furthermore, the relationships between the model and related pathways, tumor mutation and immune cell subpopulations, and drug sensitivity were explored. Moreover, two risk groups were established according to the risk score calculated by the five lactylation-related genes (LRGs). Subsequently, a nomogram scoring system was established to predict disease-free survival (DFS) of patients by combining clinicopathological features and lactylation-related risk scores. In addition, the mRNA expression levels of five genes were verified in PCa cell lines by qPCR. Results: We identified 5 key LRGs (ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) and constructed the LRGs prognostic model. The AUC values for 1 -, 3 -, and 5-year DFS in the TCGA dataset were 0.762, 0.745, and 0.709, respectively. The risk score was found a better predictor of DFS than traditional clinicopathological features in PCa. A nomogram that combined the risk score with clinical variables accurately predicted the outcome of the patients. The PCa patients in the high-risk group have a higher proportion of regulatory T cells and M2 macrophage, a higher tumor mutation burden, and a worse prognosis than those in the low-risk group. The high-risk group had a lower IC50 for certain chemotherapeutic drugs, such as Docetaxel, and Paclitaxel than the low-risk group. Furthermore, five key LRGs were found to be highly expressed in castration-resistant PCa cells. Conclusion: The lactylation-related genes prognostic model can effectively predict the DFS and therapeutic responses in patients with PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
啦啦啦喽完成签到 ,获得积分10
2秒前
狂野悟空完成签到,获得积分10
2秒前
4秒前
captain601完成签到,获得积分10
4秒前
dd发布了新的文献求助10
7秒前
8秒前
pink完成签到 ,获得积分10
8秒前
9秒前
zz发布了新的文献求助10
10秒前
赘婿应助高小丽采纳,获得10
11秒前
yaolei完成签到,获得积分10
12秒前
圆芋头关注了科研通微信公众号
12秒前
coffeecoffee发布了新的文献求助30
13秒前
默默发布了新的文献求助30
13秒前
叶95发布了新的文献求助10
13秒前
13秒前
14秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
17秒前
666发布了新的文献求助10
18秒前
mmm完成签到 ,获得积分10
19秒前
19秒前
乔心发布了新的文献求助10
20秒前
21秒前
23秒前
朝叶暮雪发布了新的文献求助10
23秒前
苏书白应助xcr采纳,获得10
24秒前
25秒前
稳重伊发布了新的文献求助10
27秒前
27秒前
优雅的紫寒完成签到,获得积分10
27秒前
Fan完成签到,获得积分10
27秒前
27秒前
高小丽发布了新的文献求助10
28秒前
CQ发布了新的文献求助10
28秒前
笑点低嵩完成签到,获得积分10
29秒前
30秒前
欢呼芷雪发布了新的文献求助10
30秒前
dxxx007发布了新的文献求助10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151973
求助须知:如何正确求助?哪些是违规求助? 2803266
关于积分的说明 7853012
捐赠科研通 2460707
什么是DOI,文献DOI怎么找? 1309983
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760