已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Constructing lactylation-related genes prognostic model to effectively predict the disease-free survival and treatment responsiveness in prostate cancer based on machine learning

列线图 比例危险模型 肿瘤科 前列腺癌 内科学 基因 疾病 生存分析 Lasso(编程语言) 生物 计算生物学 癌症 生物信息学 医学 计算机科学 遗传学 万维网
作者
Jinyou Pan,Jianpeng Zhang,Jingwei Lin,Yinxin Cai,Zhigang Zhao
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:15 被引量:13
标识
DOI:10.3389/fgene.2024.1343140
摘要

Background: Prostate cancer (PCa) is one of the most common malignancies in men with a poor prognosis. It is therefore of great clinical importance to find reliable prognostic indicators for PCa. Many studies have revealed the pivotal role of protein lactylation in tumor development and progression. This research aims to analyze the effect of lactylation-related genes on PCa prognosis. Methods: By downloading mRNA-Seq data of TCGA PCa, we obtained the differential genes related to lactylation in PCa. Five machine learning algorithms were used to screen for lactylation-related key genes for PCa, then the five overlapping key genes were used to construct a survival prognostic model by lasso cox regression analysis. Furthermore, the relationships between the model and related pathways, tumor mutation and immune cell subpopulations, and drug sensitivity were explored. Moreover, two risk groups were established according to the risk score calculated by the five lactylation-related genes (LRGs). Subsequently, a nomogram scoring system was established to predict disease-free survival (DFS) of patients by combining clinicopathological features and lactylation-related risk scores. In addition, the mRNA expression levels of five genes were verified in PCa cell lines by qPCR. Results: We identified 5 key LRGs (ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) and constructed the LRGs prognostic model. The AUC values for 1 -, 3 -, and 5-year DFS in the TCGA dataset were 0.762, 0.745, and 0.709, respectively. The risk score was found a better predictor of DFS than traditional clinicopathological features in PCa. A nomogram that combined the risk score with clinical variables accurately predicted the outcome of the patients. The PCa patients in the high-risk group have a higher proportion of regulatory T cells and M2 macrophage, a higher tumor mutation burden, and a worse prognosis than those in the low-risk group. The high-risk group had a lower IC50 for certain chemotherapeutic drugs, such as Docetaxel, and Paclitaxel than the low-risk group. Furthermore, five key LRGs were found to be highly expressed in castration-resistant PCa cells. Conclusion: The lactylation-related genes prognostic model can effectively predict the DFS and therapeutic responses in patients with PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
biozj发布了新的文献求助10
2秒前
flippedaaa发布了新的文献求助10
2秒前
he完成签到,获得积分10
4秒前
酷波er应助俊逸的蛋挞采纳,获得10
4秒前
8秒前
8秒前
VIVI发布了新的文献求助10
8秒前
懵懂的毛豆完成签到,获得积分10
8秒前
YamDaamCaa应助Liu采纳,获得30
10秒前
11秒前
冷傲曼荷完成签到 ,获得积分10
11秒前
超帅的访云完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
biozj完成签到 ,获得积分20
15秒前
李健的小迷弟应助雨文采纳,获得10
16秒前
LMR完成签到,获得积分10
16秒前
16秒前
唐文硕发布了新的文献求助10
16秒前
16秒前
17秒前
hyhyhyhy发布了新的文献求助10
18秒前
我是老大应助肖礼成采纳,获得10
21秒前
NexusExplorer应助HaonanZhang采纳,获得30
22秒前
科目三应助hyhyhyhy采纳,获得10
22秒前
Hello应助俊逸的蛋挞采纳,获得10
22秒前
22秒前
Owen应助科研通管家采纳,获得10
25秒前
聪慧小霜应助科研通管家采纳,获得10
25秒前
聪慧小霜应助科研通管家采纳,获得10
25秒前
今后应助科研通管家采纳,获得10
25秒前
小二郎应助科研通管家采纳,获得10
25秒前
在水一方应助科研通管家采纳,获得10
25秒前
小蘑菇应助科研通管家采纳,获得10
25秒前
聪慧小霜应助科研通管家采纳,获得10
26秒前
26秒前
搜集达人应助科研通管家采纳,获得10
26秒前
26秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980465
求助须知:如何正确求助?哪些是违规求助? 3524436
关于积分的说明 11221420
捐赠科研通 3261850
什么是DOI,文献DOI怎么找? 1800921
邀请新用户注册赠送积分活动 879507
科研通“疑难数据库(出版商)”最低求助积分说明 807283