已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Constructing lactylation-related genes prognostic model to effectively predict the disease-free survival and treatment responsiveness in prostate cancer based on machine learning

列线图 比例危险模型 肿瘤科 前列腺癌 内科学 基因 疾病 生存分析 Lasso(编程语言) 生物 计算生物学 癌症 生物信息学 医学 计算机科学 遗传学 万维网
作者
Jinyou Pan,Jianpeng Zhang,Jingwei Lin,Yinxin Cai,Zhigang Zhao
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:15: 1343140-1343140 被引量:29
标识
DOI:10.3389/fgene.2024.1343140
摘要

Background: Prostate cancer (PCa) is one of the most common malignancies in men with a poor prognosis. It is therefore of great clinical importance to find reliable prognostic indicators for PCa. Many studies have revealed the pivotal role of protein lactylation in tumor development and progression. This research aims to analyze the effect of lactylation-related genes on PCa prognosis. Methods: By downloading mRNA-Seq data of TCGA PCa, we obtained the differential genes related to lactylation in PCa. Five machine learning algorithms were used to screen for lactylation-related key genes for PCa, then the five overlapping key genes were used to construct a survival prognostic model by lasso cox regression analysis. Furthermore, the relationships between the model and related pathways, tumor mutation and immune cell subpopulations, and drug sensitivity were explored. Moreover, two risk groups were established according to the risk score calculated by the five lactylation-related genes (LRGs). Subsequently, a nomogram scoring system was established to predict disease-free survival (DFS) of patients by combining clinicopathological features and lactylation-related risk scores. In addition, the mRNA expression levels of five genes were verified in PCa cell lines by qPCR. Results: We identified 5 key LRGs (ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) and constructed the LRGs prognostic model. The AUC values for 1 -, 3 -, and 5-year DFS in the TCGA dataset were 0.762, 0.745, and 0.709, respectively. The risk score was found a better predictor of DFS than traditional clinicopathological features in PCa. A nomogram that combined the risk score with clinical variables accurately predicted the outcome of the patients. The PCa patients in the high-risk group have a higher proportion of regulatory T cells and M2 macrophage, a higher tumor mutation burden, and a worse prognosis than those in the low-risk group. The high-risk group had a lower IC50 for certain chemotherapeutic drugs, such as Docetaxel, and Paclitaxel than the low-risk group. Furthermore, five key LRGs were found to be highly expressed in castration-resistant PCa cells. Conclusion: The lactylation-related genes prognostic model can effectively predict the DFS and therapeutic responses in patients with PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呆萌的鸿煊完成签到,获得积分10
1秒前
完美世界应助淡然明轩采纳,获得10
2秒前
2秒前
清一完成签到,获得积分10
2秒前
Hao完成签到,获得积分10
3秒前
可爱的函函应助Bin采纳,获得10
3秒前
www发布了新的文献求助10
4秒前
常常嘻嘻发布了新的文献求助10
7秒前
ccf完成签到 ,获得积分10
8秒前
9秒前
SciGPT应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
天天快乐应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
AN应助科研通管家采纳,获得100
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
9秒前
TED应助科研通管家采纳,获得10
9秒前
9秒前
轨迹应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得30
9秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
10秒前
Sunday完成签到 ,获得积分10
12秒前
科研通AI6.1应助熊熊阁采纳,获得10
13秒前
13秒前
量子星尘发布了新的文献求助10
15秒前
丘比特应助chruse采纳,获得10
15秒前
liya发布了新的文献求助10
17秒前
李健应助佛光辉采纳,获得10
18秒前
18秒前
18秒前
无奈的盈发布了新的文献求助10
18秒前
20秒前
20秒前
21秒前
Groot发布了新的文献求助10
23秒前
叼着奶瓶上天完成签到,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771770
求助须知:如何正确求助?哪些是违规求助? 5593601
关于积分的说明 15428336
捐赠科研通 4905041
什么是DOI,文献DOI怎么找? 2639200
邀请新用户注册赠送积分活动 1587060
关于科研通互助平台的介绍 1541941