Constructing lactylation-related genes prognostic model to effectively predict the disease-free survival and treatment responsiveness in prostate cancer based on machine learning

列线图 比例危险模型 肿瘤科 前列腺癌 内科学 基因 疾病 生存分析 Lasso(编程语言) 生物 计算生物学 癌症 生物信息学 医学 计算机科学 遗传学 万维网
作者
Jinyou Pan,Jianpeng Zhang,Jingwei Lin,Yinxin Cai,Zhigang Zhao
出处
期刊:Frontiers in Genetics [Frontiers Media SA]
卷期号:15: 1343140-1343140 被引量:27
标识
DOI:10.3389/fgene.2024.1343140
摘要

Background: Prostate cancer (PCa) is one of the most common malignancies in men with a poor prognosis. It is therefore of great clinical importance to find reliable prognostic indicators for PCa. Many studies have revealed the pivotal role of protein lactylation in tumor development and progression. This research aims to analyze the effect of lactylation-related genes on PCa prognosis. Methods: By downloading mRNA-Seq data of TCGA PCa, we obtained the differential genes related to lactylation in PCa. Five machine learning algorithms were used to screen for lactylation-related key genes for PCa, then the five overlapping key genes were used to construct a survival prognostic model by lasso cox regression analysis. Furthermore, the relationships between the model and related pathways, tumor mutation and immune cell subpopulations, and drug sensitivity were explored. Moreover, two risk groups were established according to the risk score calculated by the five lactylation-related genes (LRGs). Subsequently, a nomogram scoring system was established to predict disease-free survival (DFS) of patients by combining clinicopathological features and lactylation-related risk scores. In addition, the mRNA expression levels of five genes were verified in PCa cell lines by qPCR. Results: We identified 5 key LRGs (ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) and constructed the LRGs prognostic model. The AUC values for 1 -, 3 -, and 5-year DFS in the TCGA dataset were 0.762, 0.745, and 0.709, respectively. The risk score was found a better predictor of DFS than traditional clinicopathological features in PCa. A nomogram that combined the risk score with clinical variables accurately predicted the outcome of the patients. The PCa patients in the high-risk group have a higher proportion of regulatory T cells and M2 macrophage, a higher tumor mutation burden, and a worse prognosis than those in the low-risk group. The high-risk group had a lower IC50 for certain chemotherapeutic drugs, such as Docetaxel, and Paclitaxel than the low-risk group. Furthermore, five key LRGs were found to be highly expressed in castration-resistant PCa cells. Conclusion: The lactylation-related genes prognostic model can effectively predict the DFS and therapeutic responses in patients with PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mmxn发布了新的文献求助10
1秒前
鸟与野鹿完成签到,获得积分10
1秒前
2秒前
LuckyR完成签到,获得积分10
2秒前
安渝发布了新的文献求助10
2秒前
2秒前
feike发布了新的文献求助10
2秒前
liao应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
星辰大海应助lzy采纳,获得10
3秒前
今后应助科研通管家采纳,获得10
3秒前
liao应助科研通管家采纳,获得10
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
xxfsx应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得20
4秒前
科研通AI6应助科研通管家采纳,获得30
4秒前
SSY完成签到,获得积分10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
Ava应助挡住所有坏运气888采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
xxfsx应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
王荷一发布了新的文献求助10
5秒前
Mmxn完成签到,获得积分10
6秒前
6秒前
文心发布了新的文献求助10
6秒前
香蕉觅云应助从容的子轩采纳,获得10
6秒前
研友_VZG7GZ应助二月采纳,获得10
6秒前
流沙完成签到,获得积分10
7秒前
葡萄葡萄发布了新的文献求助10
7秒前
zzzq完成签到,获得积分10
9秒前
9秒前
天天快乐应助zz采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468932
求助须知:如何正确求助?哪些是违规求助? 4572214
关于积分的说明 14334335
捐赠科研通 4499055
什么是DOI,文献DOI怎么找? 2464831
邀请新用户注册赠送积分活动 1453392
关于科研通互助平台的介绍 1427961