清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Constructing lactylation-related genes prognostic model to effectively predict the disease-free survival and treatment responsiveness in prostate cancer based on machine learning

列线图 比例危险模型 肿瘤科 前列腺癌 内科学 基因 疾病 生存分析 Lasso(编程语言) 生物 计算生物学 癌症 生物信息学 医学 计算机科学 遗传学 万维网
作者
Jinyou Pan,Jianpeng Zhang,Jingwei Lin,Yinxin Cai,Zhigang Zhao
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:15 被引量:18
标识
DOI:10.3389/fgene.2024.1343140
摘要

Background: Prostate cancer (PCa) is one of the most common malignancies in men with a poor prognosis. It is therefore of great clinical importance to find reliable prognostic indicators for PCa. Many studies have revealed the pivotal role of protein lactylation in tumor development and progression. This research aims to analyze the effect of lactylation-related genes on PCa prognosis. Methods: By downloading mRNA-Seq data of TCGA PCa, we obtained the differential genes related to lactylation in PCa. Five machine learning algorithms were used to screen for lactylation-related key genes for PCa, then the five overlapping key genes were used to construct a survival prognostic model by lasso cox regression analysis. Furthermore, the relationships between the model and related pathways, tumor mutation and immune cell subpopulations, and drug sensitivity were explored. Moreover, two risk groups were established according to the risk score calculated by the five lactylation-related genes (LRGs). Subsequently, a nomogram scoring system was established to predict disease-free survival (DFS) of patients by combining clinicopathological features and lactylation-related risk scores. In addition, the mRNA expression levels of five genes were verified in PCa cell lines by qPCR. Results: We identified 5 key LRGs (ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) and constructed the LRGs prognostic model. The AUC values for 1 -, 3 -, and 5-year DFS in the TCGA dataset were 0.762, 0.745, and 0.709, respectively. The risk score was found a better predictor of DFS than traditional clinicopathological features in PCa. A nomogram that combined the risk score with clinical variables accurately predicted the outcome of the patients. The PCa patients in the high-risk group have a higher proportion of regulatory T cells and M2 macrophage, a higher tumor mutation burden, and a worse prognosis than those in the low-risk group. The high-risk group had a lower IC50 for certain chemotherapeutic drugs, such as Docetaxel, and Paclitaxel than the low-risk group. Furthermore, five key LRGs were found to be highly expressed in castration-resistant PCa cells. Conclusion: The lactylation-related genes prognostic model can effectively predict the DFS and therapeutic responses in patients with PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小鱼完成签到 ,获得积分10
20秒前
ww完成签到,获得积分10
45秒前
长孙归尘完成签到 ,获得积分10
47秒前
yuntong完成签到 ,获得积分0
1分钟前
合适饼干完成签到 ,获得积分10
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
coolplex完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
guoxihan完成签到,获得积分10
2分钟前
chichenglin完成签到 ,获得积分0
2分钟前
RLLLLLLL完成签到 ,获得积分10
2分钟前
辻诺完成签到 ,获得积分10
3分钟前
Tong完成签到,获得积分0
3分钟前
Hiram完成签到,获得积分10
3分钟前
简单幸福完成签到 ,获得积分10
3分钟前
xiaoyi完成签到 ,获得积分10
3分钟前
hzauhzau完成签到 ,获得积分10
3分钟前
新嘟完成签到 ,获得积分10
3分钟前
千帆破浪完成签到 ,获得积分10
4分钟前
NINI完成签到 ,获得积分10
4分钟前
矢思然完成签到,获得积分10
4分钟前
cadcae完成签到,获得积分10
4分钟前
wwe完成签到,获得积分10
5分钟前
大湖玩家完成签到,获得积分10
5分钟前
啦啦啦完成签到 ,获得积分10
5分钟前
hyjcs完成签到,获得积分0
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
葫芦芦芦完成签到 ,获得积分10
6分钟前
yys10l完成签到,获得积分10
6分钟前
manfullmoon完成签到,获得积分0
6分钟前
yys完成签到,获得积分10
6分钟前
凉面完成签到 ,获得积分10
6分钟前
虚心的靖仇完成签到,获得积分20
7分钟前
zzgpku完成签到,获得积分0
7分钟前
7分钟前
加贝完成签到 ,获得积分10
7分钟前
胡国伦完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910492
求助须知:如何正确求助?哪些是违规求助? 4186337
关于积分的说明 12999337
捐赠科研通 3953768
什么是DOI,文献DOI怎么找? 2168120
邀请新用户注册赠送积分活动 1186557
关于科研通互助平台的介绍 1093736