亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Constructing lactylation-related genes prognostic model to effectively predict the disease-free survival and treatment responsiveness in prostate cancer based on machine learning

列线图 比例危险模型 肿瘤科 前列腺癌 内科学 基因 疾病 生存分析 Lasso(编程语言) 生物 计算生物学 癌症 生物信息学 医学 计算机科学 遗传学 万维网
作者
Jinyou Pan,Jianpeng Zhang,Jingwei Lin,Yinxin Cai,Zhigang Zhao
出处
期刊:Frontiers in Genetics [Frontiers Media]
卷期号:15 被引量:11
标识
DOI:10.3389/fgene.2024.1343140
摘要

Background: Prostate cancer (PCa) is one of the most common malignancies in men with a poor prognosis. It is therefore of great clinical importance to find reliable prognostic indicators for PCa. Many studies have revealed the pivotal role of protein lactylation in tumor development and progression. This research aims to analyze the effect of lactylation-related genes on PCa prognosis. Methods: By downloading mRNA-Seq data of TCGA PCa, we obtained the differential genes related to lactylation in PCa. Five machine learning algorithms were used to screen for lactylation-related key genes for PCa, then the five overlapping key genes were used to construct a survival prognostic model by lasso cox regression analysis. Furthermore, the relationships between the model and related pathways, tumor mutation and immune cell subpopulations, and drug sensitivity were explored. Moreover, two risk groups were established according to the risk score calculated by the five lactylation-related genes (LRGs). Subsequently, a nomogram scoring system was established to predict disease-free survival (DFS) of patients by combining clinicopathological features and lactylation-related risk scores. In addition, the mRNA expression levels of five genes were verified in PCa cell lines by qPCR. Results: We identified 5 key LRGs (ALDOA, DDX39A, H2AX, KIF2C, RACGAP1) and constructed the LRGs prognostic model. The AUC values for 1 -, 3 -, and 5-year DFS in the TCGA dataset were 0.762, 0.745, and 0.709, respectively. The risk score was found a better predictor of DFS than traditional clinicopathological features in PCa. A nomogram that combined the risk score with clinical variables accurately predicted the outcome of the patients. The PCa patients in the high-risk group have a higher proportion of regulatory T cells and M2 macrophage, a higher tumor mutation burden, and a worse prognosis than those in the low-risk group. The high-risk group had a lower IC50 for certain chemotherapeutic drugs, such as Docetaxel, and Paclitaxel than the low-risk group. Furthermore, five key LRGs were found to be highly expressed in castration-resistant PCa cells. Conclusion: The lactylation-related genes prognostic model can effectively predict the DFS and therapeutic responses in patients with PCa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
Hello应助whardon采纳,获得10
6秒前
6秒前
StonesKing完成签到,获得积分20
7秒前
8秒前
11秒前
12秒前
张志伟发布了新的文献求助10
12秒前
whardon发布了新的文献求助10
16秒前
ChencanFang完成签到,获得积分10
22秒前
迅速的菲鹰完成签到,获得积分10
23秒前
酷波er应助Rewi_Zhang采纳,获得10
24秒前
24秒前
研友_LOoomL完成签到 ,获得积分10
25秒前
28秒前
麦兜做科研完成签到 ,获得积分10
28秒前
张志伟完成签到,获得积分10
29秒前
30秒前
31秒前
Rewi_Zhang发布了新的文献求助10
34秒前
sonya发布了新的文献求助100
34秒前
润润润完成签到 ,获得积分10
37秒前
苗修杰完成签到,获得积分10
40秒前
怡然剑成完成签到 ,获得积分10
40秒前
Huanghong完成签到,获得积分10
41秒前
lanvinnn阿银完成签到,获得积分10
43秒前
1分钟前
野生菜狗发布了新的文献求助10
1分钟前
1分钟前
科研通AI5应助小材不菜采纳,获得30
1分钟前
丘比特应助BIU采纳,获得10
1分钟前
1分钟前
欧阳完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
柔弱的笑翠完成签到,获得积分10
1分钟前
羊羊发布了新的文献求助30
1分钟前
1分钟前
年鱼精完成签到 ,获得积分10
1分钟前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3725296
求助须知:如何正确求助?哪些是违规求助? 3270317
关于积分的说明 9965444
捐赠科研通 2985324
什么是DOI,文献DOI怎么找? 1637875
邀请新用户注册赠送积分活动 777746
科研通“疑难数据库(出版商)”最低求助积分说明 747186