重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

GTMFuse: Group-attention transformer-driven multiscale dense feature-enhanced network for infrared and visible image fusion

人工智能 红外线的 融合 特征(语言学) 计算机科学 变压器 计算机视觉 图像融合 模式识别(心理学) 群(周期表) 图像(数学) 物理 工程类 光学 电气工程 电压 哲学 语言学 量子力学
作者
Liye Mei,Xinglong Hu,Zhaoyi Ye,Linfeng Tang,Ying Wang,Di Li,Yan Liu,Xin Hao,Cheng Lei,Chuan Xu,Wei Yang
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:293: 111658-111658 被引量:27
标识
DOI:10.1016/j.knosys.2024.111658
摘要

Infrared and visible images captured by different devices can be seamlessly integrated into a single composite image through the application of image fusion techniques. However, many existing convolutional neural network-based methods for infrared and visible image fusion have exhibited limited capability for effectively amalgamating information from the source images. Consequently, we propose a group-attention transformer into the multiscale feature enhanced network for infrared and visible image fusion, which we abbreviate as GTMFuse. Specifically, GTMFuse employs multiscale dual-channel encoders to independently process the source image and extract multiscale features. Among the encoders, the group-attention transformer module is utilized to facilitate more comprehensive long-range feature dependency modeling at each scale. This innovative module seamlessly combines a fixed-direction stripe attention mechanism with channel attention and window attention, enabling comprehensive global long-range information capture and interaction with feature information across the source images. The multiscale features obtained from the group-attention transformer module are integrated into the fused image through a meticulously designed dense fusion block. Furthermore, this study introduces a novel dataset named HBUT-IV, encompassing surveillance images captured from multiple viewpoints. The HBUT-IV dataset serves as a valuable benchmark for assessing the efficacy of fusion methods. Extensive experiments are conducted on four datasets employing nine comparative methods, revealing the superior performance of the GTMFuse approach. The implementation code is accessible at https://github.com/XingLongH/GTMFuse.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
寒夜发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
大个应助单薄的小松鼠采纳,获得10
4秒前
天天快乐应助伊呀呀呀采纳,获得10
4秒前
4秒前
科研通AI6应助要减肥高山采纳,获得10
5秒前
5秒前
wwwww完成签到,获得积分20
6秒前
6秒前
ZZz完成签到,获得积分20
7秒前
zcy发布了新的文献求助10
7秒前
7秒前
一一发布了新的文献求助20
8秒前
顺利盼望发布了新的文献求助10
8秒前
wise111发布了新的文献求助10
8秒前
小小发布了新的文献求助10
9秒前
卡尔完成签到,获得积分10
9秒前
自由的云朵完成签到 ,获得积分10
10秒前
斯南完成签到,获得积分10
10秒前
杭问兰发布了新的文献求助10
12秒前
李爱国应助虚幻的小海豚采纳,获得10
12秒前
12秒前
犹豫山菡完成签到,获得积分10
13秒前
Owen应助研友_LX295Z采纳,获得30
13秒前
13秒前
t通完成签到,获得积分10
14秒前
15秒前
qqq完成签到,获得积分10
16秒前
16秒前
17秒前
ck完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5468193
求助须知:如何正确求助?哪些是违规求助? 4571644
关于积分的说明 14330855
捐赠科研通 4498131
什么是DOI,文献DOI怎么找? 2464353
邀请新用户注册赠送积分活动 1453088
关于科研通互助平台的介绍 1427739