Predictive analytics for cardiovascular patient readmission and mortality: An explainable approach

医学 梯度升压 接收机工作特性 红细胞分布宽度 决策树 肌钙蛋白 列线图 病历 内科学 机器学习 急诊医学 算法 计算机科学 心肌梗塞 随机森林
作者
Leo C.E. Huberts,Sihan Li,Victoria Blake,Louisa Jorm,Jennifer Yu,Sze‐Yuan Ooi,Blanca Gallego
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:174: 108321-108321
标识
DOI:10.1016/j.compbiomed.2024.108321
摘要

Cardiovascular patients experience high rates of adverse outcomes following discharge from hospital, which may be preventable through early identification and targeted action. This study aimed to investigate the effectiveness and explainability of machine learning algorithms in predicting unplanned readmission and death in cardiovascular patients at 30 days and 180 days from discharge. Gradient boosting machines were trained and evaluated using data from hospital electronic medical records linked to hospital administrative and mortality data for 39,255 patients admitted to four hospitals in New South Wales, Australia between 2017 and 2021. Sociodemographic variables, admission history, and clinical information were used as potential predictors. The performance was compared to LASSO regression, as well as the HOSPITAL and LACE risk score indices. Important risk factors identified by the gradient-boosting machine model were explored using Shapley values. The models performed well, especially for the mortality outcomes. Area under the receiver operating characteristic curve values were 0.70 for readmission and 0.87–0.90 for mortality using the full gradient boosting machine algorithms. Among the top predictors for 30-day and 180-day readmission were increased red cell distribution width, old age (especially above 80 years), high measured troponin and urea levels, not being married or in a relationship, and low albumin levels. For mortality, these included increased red cell distribution width, old age (especially older than 70 years), high measured troponin and urea levels, high neutrophil and monocyte counts, and low eosinophil and lymphocyte counts. The Shapley values gave clear insight into the dynamics of decision-tree-based models. We demonstrated an explainable predictive algorithm to identify cardiovascular patients who are at high risk of readmission or death at discharge from the hospital and identified key risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
sssssssssss发布了新的文献求助10
1秒前
思源应助阿九采纳,获得10
2秒前
俏皮丹妗发布了新的文献求助10
2秒前
2秒前
DamonFri完成签到,获得积分10
2秒前
如初发布了新的文献求助10
3秒前
am完成签到,获得积分10
3秒前
洪婉馨完成签到 ,获得积分20
4秒前
123完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
贪玩手链完成签到,获得积分10
5秒前
牛牛发布了新的文献求助10
6秒前
7秒前
123发布了新的文献求助10
7秒前
爆米花应助传统的松鼠采纳,获得10
7秒前
忐忑的草丛完成签到,获得积分10
8秒前
今后应助活泼的番茄采纳,获得10
9秒前
Jasper应助淡定的黑米采纳,获得10
9秒前
123发布了新的文献求助20
9秒前
nyf凡发布了新的文献求助10
10秒前
10秒前
10秒前
10秒前
11秒前
好大一只狗完成签到,获得积分10
11秒前
12秒前
13秒前
小李完成签到 ,获得积分10
14秒前
脑洞疼应助个性盼易采纳,获得10
14秒前
饱满乌冬面完成签到,获得积分10
14秒前
15秒前
阿九发布了新的文献求助10
15秒前
15秒前
一诺相许完成签到 ,获得积分10
15秒前
16秒前
liutg24发布了新的文献求助10
17秒前
stuart发布了新的文献求助10
18秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961767
求助须知:如何正确求助?哪些是违规求助? 3508099
关于积分的说明 11139632
捐赠科研通 3240798
什么是DOI,文献DOI怎么找? 1791052
邀请新用户注册赠送积分活动 872720
科研通“疑难数据库(出版商)”最低求助积分说明 803344