Predictive analytics for cardiovascular patient readmission and mortality: An explainable approach

医学 梯度升压 接收机工作特性 红细胞分布宽度 决策树 肌钙蛋白 列线图 病历 内科学 机器学习 急诊医学 算法 计算机科学 心肌梗塞 随机森林
作者
Leo C.E. Huberts,Sihan Li,Victoria Blake,Louisa Jorm,Jennifer Yu,Sze‐Yuan Ooi,Blanca Gallego
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:174: 108321-108321
标识
DOI:10.1016/j.compbiomed.2024.108321
摘要

Cardiovascular patients experience high rates of adverse outcomes following discharge from hospital, which may be preventable through early identification and targeted action. This study aimed to investigate the effectiveness and explainability of machine learning algorithms in predicting unplanned readmission and death in cardiovascular patients at 30 days and 180 days from discharge. Gradient boosting machines were trained and evaluated using data from hospital electronic medical records linked to hospital administrative and mortality data for 39,255 patients admitted to four hospitals in New South Wales, Australia between 2017 and 2021. Sociodemographic variables, admission history, and clinical information were used as potential predictors. The performance was compared to LASSO regression, as well as the HOSPITAL and LACE risk score indices. Important risk factors identified by the gradient-boosting machine model were explored using Shapley values. The models performed well, especially for the mortality outcomes. Area under the receiver operating characteristic curve values were 0.70 for readmission and 0.87–0.90 for mortality using the full gradient boosting machine algorithms. Among the top predictors for 30-day and 180-day readmission were increased red cell distribution width, old age (especially above 80 years), high measured troponin and urea levels, not being married or in a relationship, and low albumin levels. For mortality, these included increased red cell distribution width, old age (especially older than 70 years), high measured troponin and urea levels, high neutrophil and monocyte counts, and low eosinophil and lymphocyte counts. The Shapley values gave clear insight into the dynamics of decision-tree-based models. We demonstrated an explainable predictive algorithm to identify cardiovascular patients who are at high risk of readmission or death at discharge from the hospital and identified key risk factors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助YY采纳,获得10
刚刚
懦弱的安珊完成签到,获得积分10
1秒前
Akim应助xiaokezhang采纳,获得10
1秒前
1秒前
柠木完成签到 ,获得积分10
1秒前
系统提示发布了新的文献求助10
1秒前
marigold完成签到,获得积分10
1秒前
Gaoge完成签到,获得积分10
2秒前
愉快的无招完成签到,获得积分10
2秒前
2秒前
HEIKU应助习习采纳,获得10
3秒前
3秒前
3秒前
3秒前
合适苗条完成签到,获得积分10
3秒前
Zn应助开水泡饼采纳,获得10
3秒前
科目三应助Liu采纳,获得10
4秒前
4秒前
eating完成签到,获得积分10
4秒前
李双艳完成签到,获得积分10
4秒前
英姑应助科研混子采纳,获得10
4秒前
li完成签到,获得积分10
5秒前
Hungrylunch应助woshiwuziq采纳,获得20
6秒前
合适苗条发布了新的文献求助10
6秒前
安静听白发布了新的文献求助10
6秒前
krystal发布了新的文献求助10
6秒前
7秒前
15122303完成签到,获得积分10
7秒前
lht完成签到 ,获得积分10
8秒前
传奇3应助纯真电源采纳,获得10
8秒前
环走鱼尾纹完成签到 ,获得积分10
8秒前
xiuxiu_27发布了新的文献求助10
9秒前
222完成签到,获得积分10
9秒前
zyz1132完成签到,获得积分10
9秒前
何处芳歇完成签到,获得积分10
10秒前
10秒前
LXYang完成签到,获得积分10
10秒前
10秒前
LL完成签到,获得积分10
10秒前
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678