Exploration of a noninvasive radiomics classifier for breast cancer tumor microenvironment categorization and prognostic outcome prediction

无线电技术 医学 乳腺癌 肿瘤微环境 分类器(UML) 磁共振成像 总体生存率 机器学习 随机森林 肿瘤科 癌症 放射科 内科学 人工智能 计算机科学
作者
Xiaorui Han,Zhengze Gong,Yuan Guo,Wenjie Tang,Xinhua Wei
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:175: 111441-111441 被引量:3
标识
DOI:10.1016/j.ejrad.2024.111441
摘要

Rationale and Objectives: Breast cancer progression and treatment response are significantly influenced by the tumor microenvironment (TME). Traditional methods for assessing TME are invasive, posing a challenge for patient care. This study introduces a non-invasive approach to TME classification by integrating radiomics and machine learning, aiming to predict the TME status using imaging data, thereby aiding in prognostic outcome prediction. Materials and Methods Utilizing multi-omics data from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), this study employed CIBERSORT and MCP-counter algorithms analyze immune infiltration in breast cancer. A radiomics classifier was developed using a random forest algorithm, leveraging quantitative features extracted from intratumoral and peritumoral regions of Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) scans. The classifer's ability to predict diverse TME states were and their prognostic implications were evaluated using Kaplan-Meier survival curves. Results Three distinct TME states were identified using RNA-Seq data, each displaying unique prognostic and biological characteristics. Notably, patients with increased immune cell infiltration showed significantly improved prognoses (P < 0.05). The classifier, comprising 24 radiomic features, demonstrated high predictive accuracy (AUC of training set = 0.960, 95 % CI: 0.922, 0.997; AUC of testing set = 0.853, 95 % CI: 0.687, 1.000) in differentiating these TME states. Predictions from the classifier also correlated significantly with overall patient survival (P < 0.05). Conclusion This study offers a detailed analysis of the complex TME states in breast cancer and presents a reliable, noninvasive radiomics classifier for TME assessment. The classifer's accurate prediction of TME status and its correlation with prognosis highlight its potential as a tool in personalized breast cancer treatment, paving the way for more individualized and less invasive therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaofeizhu完成签到,获得积分10
刚刚
yuC发布了新的文献求助10
刚刚
研友_8oYMyn发布了新的文献求助10
1秒前
1秒前
santrue完成签到,获得积分10
2秒前
孤独的静枫完成签到,获得积分10
4秒前
荷兰香猪完成签到,获得积分10
5秒前
5秒前
6秒前
执着惜梦完成签到,获得积分10
6秒前
7秒前
王大壮完成签到,获得积分10
8秒前
彩色蓉完成签到,获得积分10
8秒前
现实的洋葱完成签到 ,获得积分10
10秒前
Akim应助薄荷之夏采纳,获得10
10秒前
麦克发布了新的文献求助10
10秒前
11秒前
请叫我风吹麦浪应助wzc采纳,获得30
11秒前
12秒前
vocuong发布了新的文献求助10
12秒前
NexusExplorer应助errui采纳,获得10
13秒前
13秒前
13秒前
年轻的茗茗完成签到,获得积分10
14秒前
14秒前
烛光关注了科研通微信公众号
15秒前
16秒前
16秒前
555557应助nobody采纳,获得10
17秒前
充电宝应助碧蓝烨霖采纳,获得10
17秒前
wenhao发布了新的文献求助10
17秒前
18秒前
奶油小饼干完成签到,获得积分10
18秒前
hh发布了新的文献求助10
18秒前
今后应助yxf采纳,获得10
18秒前
yuC完成签到,获得积分10
18秒前
www完成签到 ,获得积分10
19秒前
麦克完成签到,获得积分10
19秒前
19秒前
天天开心发布了新的文献求助30
19秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976126
求助须知:如何正确求助?哪些是违规求助? 3520340
关于积分的说明 11202586
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877645
科研通“疑难数据库(出版商)”最低求助积分说明 806516