Exploration of a noninvasive radiomics classifier for breast cancer tumor microenvironment categorization and prognostic outcome prediction

无线电技术 医学 乳腺癌 肿瘤微环境 分类器(UML) 磁共振成像 总体生存率 机器学习 随机森林 肿瘤科 癌症 放射科 内科学 人工智能 计算机科学
作者
Xiaorui Han,Zhengze Gong,Yuan Guo,Wenjie Tang,Xinhua Wei
出处
期刊:European Journal of Radiology [Elsevier BV]
卷期号:175: 111441-111441 被引量:3
标识
DOI:10.1016/j.ejrad.2024.111441
摘要

Rationale and Objectives: Breast cancer progression and treatment response are significantly influenced by the tumor microenvironment (TME). Traditional methods for assessing TME are invasive, posing a challenge for patient care. This study introduces a non-invasive approach to TME classification by integrating radiomics and machine learning, aiming to predict the TME status using imaging data, thereby aiding in prognostic outcome prediction. Materials and Methods Utilizing multi-omics data from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), this study employed CIBERSORT and MCP-counter algorithms analyze immune infiltration in breast cancer. A radiomics classifier was developed using a random forest algorithm, leveraging quantitative features extracted from intratumoral and peritumoral regions of Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) scans. The classifer's ability to predict diverse TME states were and their prognostic implications were evaluated using Kaplan-Meier survival curves. Results Three distinct TME states were identified using RNA-Seq data, each displaying unique prognostic and biological characteristics. Notably, patients with increased immune cell infiltration showed significantly improved prognoses (P < 0.05). The classifier, comprising 24 radiomic features, demonstrated high predictive accuracy (AUC of training set = 0.960, 95 % CI: 0.922, 0.997; AUC of testing set = 0.853, 95 % CI: 0.687, 1.000) in differentiating these TME states. Predictions from the classifier also correlated significantly with overall patient survival (P < 0.05). Conclusion This study offers a detailed analysis of the complex TME states in breast cancer and presents a reliable, noninvasive radiomics classifier for TME assessment. The classifer's accurate prediction of TME status and its correlation with prognosis highlight its potential as a tool in personalized breast cancer treatment, paving the way for more individualized and less invasive therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晒黑的雪碧完成签到,获得积分10
刚刚
yao chen完成签到,获得积分10
1秒前
catch完成签到,获得积分10
1秒前
Hrx完成签到,获得积分10
1秒前
哎呀哎呀25完成签到,获得积分10
2秒前
5秒前
Shark完成签到 ,获得积分10
5秒前
我要发财完成签到,获得积分10
6秒前
卡卡罗特完成签到,获得积分10
6秒前
6秒前
天天向上完成签到 ,获得积分10
7秒前
Xinxxx完成签到,获得积分10
7秒前
Echoheart完成签到,获得积分10
7秒前
Hrx发布了新的文献求助10
8秒前
我要发财发布了新的文献求助10
10秒前
WJing发布了新的文献求助10
11秒前
haonanchen完成签到,获得积分10
12秒前
彭于晏应助专注的白柏采纳,获得10
12秒前
99v587完成签到,获得积分10
13秒前
愤怒的小马发布了新的文献求助200
14秒前
朴素海亦完成签到 ,获得积分10
15秒前
wishes完成签到 ,获得积分10
16秒前
16秒前
南城完成签到 ,获得积分10
17秒前
17秒前
19秒前
Andy完成签到,获得积分10
21秒前
伦语发布了新的文献求助10
21秒前
xdc发布了新的文献求助10
23秒前
zoe发布了新的文献求助10
25秒前
ccCherub完成签到,获得积分10
27秒前
霍楠完成签到,获得积分10
27秒前
星辰大海应助rainny采纳,获得10
27秒前
EZ完成签到 ,获得积分10
27秒前
谨慎翎完成签到 ,获得积分10
28秒前
tiantian8715完成签到,获得积分10
28秒前
如泣草芥完成签到,获得积分0
28秒前
jzhecb完成签到 ,获得积分10
29秒前
花海完成签到,获得积分10
29秒前
lingck完成签到,获得积分10
29秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038368
求助须知:如何正确求助?哪些是违规求助? 3576068
关于积分的说明 11374313
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029