Exploration of a noninvasive radiomics classifier for breast cancer tumor microenvironment categorization and prognostic outcome prediction

无线电技术 医学 乳腺癌 肿瘤微环境 分类器(UML) 磁共振成像 总体生存率 机器学习 随机森林 肿瘤科 癌症 放射科 内科学 人工智能 计算机科学
作者
Xiaorui Han,Zhengze Gong,Yuan Guo,Wenjie Tang,Xinhua Wei
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:175: 111441-111441 被引量:1
标识
DOI:10.1016/j.ejrad.2024.111441
摘要

Rationale and Objectives: Breast cancer progression and treatment response are significantly influenced by the tumor microenvironment (TME). Traditional methods for assessing TME are invasive, posing a challenge for patient care. This study introduces a non-invasive approach to TME classification by integrating radiomics and machine learning, aiming to predict the TME status using imaging data, thereby aiding in prognostic outcome prediction. Materials and Methods Utilizing multi-omics data from The Cancer Genome Atlas (TCGA) and The Cancer Imaging Archive (TCIA), this study employed CIBERSORT and MCP-counter algorithms analyze immune infiltration in breast cancer. A radiomics classifier was developed using a random forest algorithm, leveraging quantitative features extracted from intratumoral and peritumoral regions of Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) scans. The classifer's ability to predict diverse TME states were and their prognostic implications were evaluated using Kaplan-Meier survival curves. Results Three distinct TME states were identified using RNA-Seq data, each displaying unique prognostic and biological characteristics. Notably, patients with increased immune cell infiltration showed significantly improved prognoses (P < 0.05). The classifier, comprising 24 radiomic features, demonstrated high predictive accuracy (AUC of training set = 0.960, 95 % CI: 0.922, 0.997; AUC of testing set = 0.853, 95 % CI: 0.687, 1.000) in differentiating these TME states. Predictions from the classifier also correlated significantly with overall patient survival (P < 0.05). Conclusion This study offers a detailed analysis of the complex TME states in breast cancer and presents a reliable, noninvasive radiomics classifier for TME assessment. The classifer's accurate prediction of TME status and its correlation with prognosis highlight its potential as a tool in personalized breast cancer treatment, paving the way for more individualized and less invasive therapeutic strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮世完成签到,获得积分10
1秒前
2秒前
Bin发布了新的文献求助10
3秒前
3秒前
4秒前
PRAYER1029完成签到,获得积分10
4秒前
是亲爱的小王完成签到,获得积分10
5秒前
5秒前
5秒前
snowpaper完成签到,获得积分10
6秒前
冒号完成签到,获得积分10
7秒前
7秒前
mm发布了新的文献求助10
8秒前
晨光中完成签到,获得积分10
8秒前
9秒前
哎嘿应助毛毛采纳,获得10
9秒前
Yziii应助zzb采纳,获得20
10秒前
我的学习发布了新的文献求助10
10秒前
11秒前
哭泣妙海完成签到,获得积分10
11秒前
yangquanquan发布了新的文献求助10
11秒前
11秒前
szc-2000发布了新的文献求助10
11秒前
zj发布了新的文献求助10
12秒前
亦秋发布了新的文献求助10
12秒前
FashionBoy应助yl采纳,获得10
12秒前
chen完成签到,获得积分10
12秒前
刘叶发布了新的文献求助10
13秒前
啊七飞完成签到,获得积分10
13秒前
Hello应助从容的以珊采纳,获得10
13秒前
14秒前
情怀应助白冰采纳,获得10
16秒前
幽默发卡完成签到,获得积分10
16秒前
amupf完成签到 ,获得积分10
16秒前
i的问题完成签到,获得积分20
17秒前
优雅的盼旋完成签到,获得积分20
17秒前
陈朝鑫完成签到,获得积分10
18秒前
yyw发布了新的文献求助10
18秒前
方班术发布了新的文献求助10
18秒前
19秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152304
求助须知:如何正确求助?哪些是违规求助? 2803548
关于积分的说明 7854456
捐赠科研通 2461123
什么是DOI,文献DOI怎么找? 1310174
科研通“疑难数据库(出版商)”最低求助积分说明 629138
版权声明 601765