A Deep Contrastive Framework for Unsupervised Temporal Link Prediction in Dynamic Networks

链接(几何体) 计算机科学 人工智能 自然语言处理 计算机网络
作者
Pengfei Jiao,Xinxun Zhang,Zehao Liu,Long Zhang,Huaming Wu,Mengzhou Gao,Tianpeng Li,Jian Wu
出处
期刊:Information Sciences [Elsevier]
卷期号:667: 120499-120499 被引量:1
标识
DOI:10.1016/j.ins.2024.120499
摘要

In dynamic networks, temporal link prediction aims to predict the appearance and disappearance of links in future snapshots based on the network structure we have observed. It also plays a crucial role in network analysis and predicting the behavior of the dynamic system. However, most existing studies only focus on supervised temporal link prediction problems, i.e., taking part of the links in future snapshots as supervised information. The ones that can solve the unsupervised temporal link prediction problem are mainly based on matrix decomposition, which lack the capability to automatically extract nonlinear spatial and temporal features from dynamic networks. The most challenging part of this problem is to extract the inherent evolution of the patterns hidden in dynamic networks in unsupervised ways. Inspired by the application and achievement of contrastive learning in network representation learning, we propose a novel deep Contrastive framework for unsupervised Temporal Link Prediction (CTLP). Our framework is based on a deep encoder-decoder architecture, which can capture the nonlinear structure and temporal features automatically and can predict future links of subsequent snapshots of dynamic networks in an unsupervised manner. Besides, CTLP could handle the multi-step temporal link prediction problem of dynamic networks through attenuation modeling across the snapshots. Extensive experiments on temporal link prediction show that our CTLP framework significantly outperforms state-of-the-art unsupervised methods, and even outperforms the supervised methods in some cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
桐桐应助玩命的小翠采纳,获得30
2秒前
2秒前
3秒前
达达完成签到 ,获得积分10
3秒前
充电宝应助漠北采纳,获得30
3秒前
陈同学发布了新的文献求助10
4秒前
4秒前
善学以致用应助乌卡卡采纳,获得10
4秒前
科研养猫猫完成签到,获得积分10
5秒前
tyk发布了新的文献求助30
5秒前
5秒前
小白发布了新的文献求助10
6秒前
张大旺完成签到 ,获得积分10
6秒前
Eden发布了新的文献求助10
7秒前
Michelle完成签到,获得积分10
7秒前
YHY完成签到,获得积分10
7秒前
didi完成签到,获得积分10
7秒前
yxy发布了新的文献求助10
8秒前
祖国统一完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
31313完成签到,获得积分10
9秒前
YanDongXu发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
one应助ZWX采纳,获得10
12秒前
ZSJ发布了新的文献求助30
12秒前
14秒前
等待的凝芙完成签到,获得积分10
14秒前
稳重的蜜蜂完成签到,获得积分10
14秒前
Orange应助吴彦祖采纳,获得10
14秒前
14秒前
kk332完成签到,获得积分10
14秒前
大模型应助小小猪采纳,获得10
15秒前
16秒前
shineshine发布了新的文献求助20
16秒前
Michelle发布了新的文献求助10
18秒前
丘比特应助yao采纳,获得10
18秒前
19秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 941
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5442393
求助须知:如何正确求助?哪些是违规求助? 4552598
关于积分的说明 14237646
捐赠科研通 4473916
什么是DOI,文献DOI怎么找? 2451715
邀请新用户注册赠送积分活动 1442571
关于科研通互助平台的介绍 1418541