A Deep Contrastive Framework for Unsupervised Temporal Link Prediction in Dynamic Networks

链接(几何体) 计算机科学 人工智能 自然语言处理 计算机网络
作者
Pengfei Jiao,Xinxun Zhang,Zehao Liu,Long Zhang,Huaming Wu,Mengzhou Gao,Tianpeng Li,Jian Wu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:667: 120499-120499 被引量:1
标识
DOI:10.1016/j.ins.2024.120499
摘要

In dynamic networks, temporal link prediction aims to predict the appearance and disappearance of links in future snapshots based on the network structure we have observed. It also plays a crucial role in network analysis and predicting the behavior of the dynamic system. However, most existing studies only focus on supervised temporal link prediction problems, i.e., taking part of the links in future snapshots as supervised information. The ones that can solve the unsupervised temporal link prediction problem are mainly based on matrix decomposition, which lack the capability to automatically extract nonlinear spatial and temporal features from dynamic networks. The most challenging part of this problem is to extract the inherent evolution of the patterns hidden in dynamic networks in unsupervised ways. Inspired by the application and achievement of contrastive learning in network representation learning, we propose a novel deep Contrastive framework for unsupervised Temporal Link Prediction (CTLP). Our framework is based on a deep encoder-decoder architecture, which can capture the nonlinear structure and temporal features automatically and can predict future links of subsequent snapshots of dynamic networks in an unsupervised manner. Besides, CTLP could handle the multi-step temporal link prediction problem of dynamic networks through attenuation modeling across the snapshots. Extensive experiments on temporal link prediction show that our CTLP framework significantly outperforms state-of-the-art unsupervised methods, and even outperforms the supervised methods in some cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dd发布了新的文献求助10
刚刚
1秒前
1秒前
lyyyy发布了新的文献求助10
1秒前
浮游应助有魅力的寄琴采纳,获得10
1秒前
CASLSD完成签到 ,获得积分10
1秒前
Karlie完成签到,获得积分10
2秒前
天天快乐应助一区哥采纳,获得10
3秒前
搜集达人应助顾年采纳,获得10
3秒前
屈屈完成签到,获得积分10
4秒前
zyb完成签到,获得积分10
4秒前
XIAJIN完成签到,获得积分10
4秒前
领导范儿应助阳阳采纳,获得10
4秒前
你坤叔公发布了新的文献求助10
5秒前
5秒前
渡月桥完成签到,获得积分10
6秒前
情怀应助ZhouYW采纳,获得10
6秒前
6秒前
李爱国应助宓珧采纳,获得10
6秒前
7秒前
ZZZ发布了新的文献求助10
8秒前
Zzz关注了科研通微信公众号
8秒前
8秒前
范琴琴完成签到,获得积分10
9秒前
9秒前
9秒前
酷波er应助1043681559采纳,获得10
10秒前
10秒前
10秒前
梦里花落声应助dd采纳,获得10
10秒前
无心发布了新的文献求助10
11秒前
11秒前
端庄新烟发布了新的文献求助10
11秒前
压缩完成签到 ,获得积分0
12秒前
haha发布了新的文献求助10
12秒前
12秒前
Hou完成签到,获得积分10
12秒前
bing发布了新的文献求助10
13秒前
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416