已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Deep Contrastive Framework for Unsupervised Temporal Link Prediction in Dynamic Networks

链接(几何体) 计算机科学 人工智能 自然语言处理 计算机网络
作者
Pengfei Jiao,Xinxun Zhang,Zehao Liu,Long Zhang,Huaming Wu,Mengzhou Gao,Tianpeng Li,Jian Wu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:667: 120499-120499 被引量:1
标识
DOI:10.1016/j.ins.2024.120499
摘要

In dynamic networks, temporal link prediction aims to predict the appearance and disappearance of links in future snapshots based on the network structure we have observed. It also plays a crucial role in network analysis and predicting the behavior of the dynamic system. However, most existing studies only focus on supervised temporal link prediction problems, i.e., taking part of the links in future snapshots as supervised information. The ones that can solve the unsupervised temporal link prediction problem are mainly based on matrix decomposition, which lack the capability to automatically extract nonlinear spatial and temporal features from dynamic networks. The most challenging part of this problem is to extract the inherent evolution of the patterns hidden in dynamic networks in unsupervised ways. Inspired by the application and achievement of contrastive learning in network representation learning, we propose a novel deep Contrastive framework for unsupervised Temporal Link Prediction (CTLP). Our framework is based on a deep encoder-decoder architecture, which can capture the nonlinear structure and temporal features automatically and can predict future links of subsequent snapshots of dynamic networks in an unsupervised manner. Besides, CTLP could handle the multi-step temporal link prediction problem of dynamic networks through attenuation modeling across the snapshots. Extensive experiments on temporal link prediction show that our CTLP framework significantly outperforms state-of-the-art unsupervised methods, and even outperforms the supervised methods in some cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
研友_LNM558给研友_LNM558的求助进行了留言
5秒前
漂亮白枫发布了新的文献求助10
6秒前
Beyond完成签到,获得积分10
8秒前
脑洞疼应助开放芷天采纳,获得10
8秒前
大个应助漂亮白枫采纳,获得10
12秒前
zjgjnu完成签到,获得积分10
12秒前
13秒前
16秒前
16秒前
Karol发布了新的文献求助10
16秒前
桐桐应助zzzkyt采纳,获得10
18秒前
陶然共忘机完成签到 ,获得积分10
18秒前
ohooo完成签到,获得积分10
19秒前
19秒前
开放芷天发布了新的文献求助10
21秒前
22秒前
22秒前
彭于晏应助大面包采纳,获得10
24秒前
25秒前
ohooo发布了新的文献求助10
26秒前
sean发布了新的文献求助20
26秒前
27秒前
子阅完成签到 ,获得积分10
27秒前
雷家发布了新的文献求助10
27秒前
zzzkyt发布了新的文献求助10
29秒前
小蘑菇应助dapis采纳,获得10
30秒前
SciGPT应助Steven采纳,获得10
30秒前
研友_LNM558发布了新的文献求助50
33秒前
33秒前
33秒前
桐桐应助orange9采纳,获得10
33秒前
缥缈的松鼠完成签到 ,获得积分10
34秒前
34秒前
34秒前
37秒前
大面包发布了新的文献求助10
38秒前
恋雅颖月应助方睿智采纳,获得10
44秒前
Sophia发布了新的文献求助10
44秒前
45秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989857
求助须知:如何正确求助?哪些是违规求助? 3531994
关于积分的说明 11255679
捐赠科研通 3270758
什么是DOI,文献DOI怎么找? 1805053
邀请新用户注册赠送积分活动 882195
科研通“疑难数据库(出版商)”最低求助积分说明 809208