A Deep Contrastive Framework for Unsupervised Temporal Link Prediction in Dynamic Networks

链接(几何体) 计算机科学 人工智能 自然语言处理 计算机网络
作者
Pengfei Jiao,Xinxun Zhang,Zehao Liu,Long Zhang,Huaming Wu,Mengzhou Gao,Tianpeng Li,Jian Wu
出处
期刊:Information Sciences [Elsevier]
卷期号:667: 120499-120499 被引量:1
标识
DOI:10.1016/j.ins.2024.120499
摘要

In dynamic networks, temporal link prediction aims to predict the appearance and disappearance of links in future snapshots based on the network structure we have observed. It also plays a crucial role in network analysis and predicting the behavior of the dynamic system. However, most existing studies only focus on supervised temporal link prediction problems, i.e., taking part of the links in future snapshots as supervised information. The ones that can solve the unsupervised temporal link prediction problem are mainly based on matrix decomposition, which lack the capability to automatically extract nonlinear spatial and temporal features from dynamic networks. The most challenging part of this problem is to extract the inherent evolution of the patterns hidden in dynamic networks in unsupervised ways. Inspired by the application and achievement of contrastive learning in network representation learning, we propose a novel deep Contrastive framework for unsupervised Temporal Link Prediction (CTLP). Our framework is based on a deep encoder-decoder architecture, which can capture the nonlinear structure and temporal features automatically and can predict future links of subsequent snapshots of dynamic networks in an unsupervised manner. Besides, CTLP could handle the multi-step temporal link prediction problem of dynamic networks through attenuation modeling across the snapshots. Extensive experiments on temporal link prediction show that our CTLP framework significantly outperforms state-of-the-art unsupervised methods, and even outperforms the supervised methods in some cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助feng1235采纳,获得10
刚刚
香豆素完成签到 ,获得积分10
1秒前
北纬打工人完成签到,获得积分10
1秒前
2秒前
嘿嘿应助缥缈的蚂蚁采纳,获得10
3秒前
4秒前
6秒前
7秒前
xwt3628完成签到,获得积分10
7秒前
aboy完成签到,获得积分10
8秒前
realmar完成签到,获得积分10
9秒前
9秒前
青青发布了新的文献求助10
10秒前
12秒前
12秒前
幽默赛君完成签到 ,获得积分10
13秒前
英姑应助未来可期采纳,获得10
13秒前
LSY发布了新的文献求助10
13秒前
Eason完成签到,获得积分10
13秒前
航海家发布了新的文献求助10
16秒前
MQRR发布了新的文献求助10
16秒前
核桃发布了新的文献求助10
17秒前
LLLxy发布了新的文献求助30
17秒前
虚心的冷松完成签到,获得积分10
17秒前
酷波er应助科研通管家采纳,获得10
20秒前
SciGPT应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
顾矜应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
科研通AI6应助科研通管家采纳,获得10
20秒前
务实雁梅完成签到,获得积分10
20秒前
田様应助科研通管家采纳,获得10
20秒前
浮游应助科研通管家采纳,获得10
20秒前
aldehyde应助科研通管家采纳,获得10
20秒前
Owen应助科研通管家采纳,获得10
20秒前
21秒前
Ava应助科研通管家采纳,获得30
21秒前
ding应助科研通管家采纳,获得10
21秒前
21秒前
21秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5349900
求助须知:如何正确求助?哪些是违规求助? 4483544
关于积分的说明 13956290
捐赠科研通 4382763
什么是DOI,文献DOI怎么找? 2407949
邀请新用户注册赠送积分活动 1400653
关于科研通互助平台的介绍 1373903