A Deep Contrastive Framework for Unsupervised Temporal Link Prediction in Dynamic Networks

链接(几何体) 计算机科学 人工智能 自然语言处理 计算机网络
作者
Pengfei Jiao,Xinxun Zhang,Zehao Liu,Long Zhang,Huaming Wu,Mengzhou Gao,Tianpeng Li,Jian Wu
出处
期刊:Information Sciences [Elsevier BV]
卷期号:667: 120499-120499 被引量:1
标识
DOI:10.1016/j.ins.2024.120499
摘要

In dynamic networks, temporal link prediction aims to predict the appearance and disappearance of links in future snapshots based on the network structure we have observed. It also plays a crucial role in network analysis and predicting the behavior of the dynamic system. However, most existing studies only focus on supervised temporal link prediction problems, i.e., taking part of the links in future snapshots as supervised information. The ones that can solve the unsupervised temporal link prediction problem are mainly based on matrix decomposition, which lack the capability to automatically extract nonlinear spatial and temporal features from dynamic networks. The most challenging part of this problem is to extract the inherent evolution of the patterns hidden in dynamic networks in unsupervised ways. Inspired by the application and achievement of contrastive learning in network representation learning, we propose a novel deep Contrastive framework for unsupervised Temporal Link Prediction (CTLP). Our framework is based on a deep encoder-decoder architecture, which can capture the nonlinear structure and temporal features automatically and can predict future links of subsequent snapshots of dynamic networks in an unsupervised manner. Besides, CTLP could handle the multi-step temporal link prediction problem of dynamic networks through attenuation modeling across the snapshots. Extensive experiments on temporal link prediction show that our CTLP framework significantly outperforms state-of-the-art unsupervised methods, and even outperforms the supervised methods in some cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
领导范儿应助东东采纳,获得10
1秒前
昏睡的热狗完成签到 ,获得积分10
1秒前
1秒前
沉默新梅完成签到,获得积分20
1秒前
哭泣凌雪发布了新的文献求助10
2秒前
SciGPT应助小白采纳,获得10
2秒前
Singularity应助小白采纳,获得10
2秒前
CipherSage应助小白采纳,获得10
2秒前
无奈苡发布了新的文献求助10
2秒前
小张z发布了新的文献求助10
4秒前
金色热浪完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
如意闭月发布了新的文献求助10
5秒前
肖菜菜完成签到,获得积分10
5秒前
欣新发布了新的文献求助10
5秒前
心平气和完成签到,获得积分10
5秒前
雾岛翔子完成签到,获得积分10
5秒前
5秒前
5秒前
Any发布了新的文献求助10
5秒前
成成发布了新的文献求助10
6秒前
Huajing_Yang完成签到,获得积分10
7秒前
852应助沉默新梅采纳,获得10
7秒前
淡淡的丹彤完成签到 ,获得积分10
7秒前
8秒前
喃安完成签到,获得积分10
9秒前
yy发布了新的文献求助30
9秒前
独特不斜完成签到,获得积分10
9秒前
今后应助家里没有猫采纳,获得10
9秒前
童童童完成签到,获得积分10
9秒前
传奇3应助乌兰巴托没有海采纳,获得10
9秒前
李健的小迷弟应助Sure采纳,获得10
9秒前
万能图书馆应助直率海豚采纳,获得50
10秒前
Huajing_Yang发布了新的文献求助10
10秒前
11秒前
赘婿应助高贵的芷采纳,获得10
11秒前
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663305
求助须知:如何正确求助?哪些是违规求助? 3223962
关于积分的说明 9754101
捐赠科研通 2933829
什么是DOI,文献DOI怎么找? 1606430
邀请新用户注册赠送积分活动 758489
科研通“疑难数据库(出版商)”最低求助积分说明 734809