A Deep Contrastive Framework for Unsupervised Temporal Link Prediction in Dynamic Networks

链接(几何体) 计算机科学 人工智能 自然语言处理 计算机网络
作者
Pengfei Jiao,Xinxun Zhang,Zehao Liu,Long Zhang,Huaming Wu,Mengzhou Gao,Tianpeng Li,Jian Wu
出处
期刊:Information Sciences [Elsevier]
卷期号:667: 120499-120499 被引量:1
标识
DOI:10.1016/j.ins.2024.120499
摘要

In dynamic networks, temporal link prediction aims to predict the appearance and disappearance of links in future snapshots based on the network structure we have observed. It also plays a crucial role in network analysis and predicting the behavior of the dynamic system. However, most existing studies only focus on supervised temporal link prediction problems, i.e., taking part of the links in future snapshots as supervised information. The ones that can solve the unsupervised temporal link prediction problem are mainly based on matrix decomposition, which lack the capability to automatically extract nonlinear spatial and temporal features from dynamic networks. The most challenging part of this problem is to extract the inherent evolution of the patterns hidden in dynamic networks in unsupervised ways. Inspired by the application and achievement of contrastive learning in network representation learning, we propose a novel deep Contrastive framework for unsupervised Temporal Link Prediction (CTLP). Our framework is based on a deep encoder-decoder architecture, which can capture the nonlinear structure and temporal features automatically and can predict future links of subsequent snapshots of dynamic networks in an unsupervised manner. Besides, CTLP could handle the multi-step temporal link prediction problem of dynamic networks through attenuation modeling across the snapshots. Extensive experiments on temporal link prediction show that our CTLP framework significantly outperforms state-of-the-art unsupervised methods, and even outperforms the supervised methods in some cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
悦耳寒云完成签到,获得积分10
1秒前
2秒前
专注月亮发布了新的文献求助10
5秒前
5秒前
难过若枫发布了新的文献求助10
6秒前
6秒前
6秒前
端庄梦桃发布了新的文献求助30
7秒前
簌簌发布了新的文献求助10
8秒前
8秒前
ding应助青筠采纳,获得10
9秒前
q额发布了新的文献求助10
9秒前
tttttt发布了新的文献求助10
10秒前
11秒前
吴怀硕发布了新的文献求助10
12秒前
12秒前
干净冰露发布了新的文献求助10
13秒前
召唤兽完成签到,获得积分20
14秒前
Liu发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
pgg发布了新的文献求助10
17秒前
Wind完成签到,获得积分0
18秒前
18秒前
小陈栗子完成签到,获得积分20
19秒前
北沐完成签到,获得积分10
19秒前
AN发布了新的文献求助10
20秒前
20秒前
知行者发布了新的文献求助10
21秒前
斯文败类应助我不得依较采纳,获得10
22秒前
小陈栗子发布了新的文献求助10
22秒前
Cookiee完成签到 ,获得积分10
22秒前
22秒前
量子星尘发布了新的文献求助10
22秒前
Owen应助高高的东蒽采纳,获得10
23秒前
23秒前
DyG完成签到,获得积分10
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425184
求助须知:如何正确求助?哪些是违规求助? 4539282
关于积分的说明 14166597
捐赠科研通 4456440
什么是DOI,文献DOI怎么找? 2444204
邀请新用户注册赠送积分活动 1435246
关于科研通互助平台的介绍 1412568