A Deep Contrastive Framework for Unsupervised Temporal Link Prediction in Dynamic Networks

链接(几何体) 计算机科学 人工智能 自然语言处理 计算机网络
作者
Pengfei Jiao,Xinxun Zhang,Zehao Liu,Long Zhang,Huaming Wu,Mengzhou Gao,Tianpeng Li,Jian Wu
出处
期刊:Information Sciences [Elsevier]
卷期号:667: 120499-120499 被引量:1
标识
DOI:10.1016/j.ins.2024.120499
摘要

In dynamic networks, temporal link prediction aims to predict the appearance and disappearance of links in future snapshots based on the network structure we have observed. It also plays a crucial role in network analysis and predicting the behavior of the dynamic system. However, most existing studies only focus on supervised temporal link prediction problems, i.e., taking part of the links in future snapshots as supervised information. The ones that can solve the unsupervised temporal link prediction problem are mainly based on matrix decomposition, which lack the capability to automatically extract nonlinear spatial and temporal features from dynamic networks. The most challenging part of this problem is to extract the inherent evolution of the patterns hidden in dynamic networks in unsupervised ways. Inspired by the application and achievement of contrastive learning in network representation learning, we propose a novel deep Contrastive framework for unsupervised Temporal Link Prediction (CTLP). Our framework is based on a deep encoder-decoder architecture, which can capture the nonlinear structure and temporal features automatically and can predict future links of subsequent snapshots of dynamic networks in an unsupervised manner. Besides, CTLP could handle the multi-step temporal link prediction problem of dynamic networks through attenuation modeling across the snapshots. Extensive experiments on temporal link prediction show that our CTLP framework significantly outperforms state-of-the-art unsupervised methods, and even outperforms the supervised methods in some cases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大水发布了新的文献求助10
1秒前
1秒前
小蘑菇应助保持科研热情采纳,获得10
1秒前
所所应助蓦然采纳,获得10
2秒前
2秒前
爱科研的小蜗啊完成签到,获得积分10
3秒前
从容梦山发布了新的文献求助10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
luo完成签到,获得积分10
6秒前
7秒前
HQQ完成签到,获得积分20
7秒前
Ava应助夏洛采纳,获得10
8秒前
小二郎应助violet采纳,获得10
8秒前
乐观的灭绝完成签到,获得积分10
9秒前
文艺大白菜完成签到,获得积分10
9秒前
难过的谷芹应助无为采纳,获得10
9秒前
情怀应助Ljh采纳,获得10
10秒前
11秒前
11秒前
11秒前
赘婿应助秋qiu采纳,获得10
11秒前
12秒前
12秒前
13秒前
14秒前
李周发布了新的文献求助10
16秒前
17秒前
linnn发布了新的文献求助10
17秒前
18秒前
18秒前
ttsong2发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
20秒前
20秒前
晴天漫漫给晴天漫漫的求助进行了留言
21秒前
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848