Learning-Aided Evolutionary Search and Selection for Scaling-up Constrained Multiobjective Optimization

选择(遗传算法) 进化算法 进化计算 多目标优化 数学优化 计算机科学 缩放比例 人工智能 机器学习 数学 几何学
作者
Songbai Liu,Zeyi Wang,Qiuzhen Lin,Jianqiang Li,Kay Chen Tan
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:4
标识
DOI:10.1109/tevc.2024.3380366
摘要

The existing constrained multiobjective evolutionary algorithms (CMOEAs) still have great room for improvement in balancing populations convergence, diversity and feasibility on complex constrained multiobjective optimization problems (CMOPs). Besides, their effectiveness deteriorates dramatically when facing the CMOPs with scaling-up objective space or search space. We are thus motivated to design a learning-aided CMOEA with promising problem-solving ability and scalability for various CMOPs. In the proposed solver, two learning models are respectively trained online on constrained-ignored task and feasibility-first task, which are then used to learn the two improvement-based vectors for enhancing the search by differential evolution. In addition, the union population of parent and child solutions is divided into multiple subsets with a hierarchical clustering based on cosine similarity. A comprehensive indicator, considering objective-based performance and constraint violation degree of a solution, is developed to select the representative solution from each cluster. The effectiveness of the proposed optimizer is verified by solving the CMOPs with various irregular Pareto fronts, the number of objectives ranging from 2 to 15, and the dimensionality of search space scaling up to 1000.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级宇宙二踢脚完成签到,获得积分10
刚刚
刚刚
1秒前
大气小新完成签到,获得积分10
1秒前
ILS完成签到 ,获得积分10
1秒前
Orange应助澜生采纳,获得10
2秒前
lin完成签到,获得积分10
3秒前
Ares发布了新的文献求助10
3秒前
3秒前
谭平完成签到 ,获得积分10
3秒前
4秒前
淡定紫菱完成签到,获得积分10
4秒前
所所应助HYH采纳,获得20
4秒前
4秒前
木香完成签到,获得积分10
5秒前
尘雾发布了新的文献求助10
6秒前
7秒前
高鑫完成签到 ,获得积分10
7秒前
英姑应助dd采纳,获得10
7秒前
Chan0501关注了科研通微信公众号
8秒前
8秒前
研友_LMNjkn发布了新的文献求助10
8秒前
tjunqi完成签到,获得积分10
9秒前
9秒前
科研通AI2S应助下课了吧采纳,获得10
10秒前
10秒前
10秒前
好的完成签到,获得积分20
11秒前
蜂蜜不是糖完成签到 ,获得积分10
11秒前
狮子最爱吃芒果完成签到,获得积分10
11秒前
12秒前
13秒前
尘雾完成签到,获得积分10
13秒前
澜生发布了新的文献求助10
14秒前
leekle完成签到,获得积分10
15秒前
shengChen发布了新的文献求助10
15秒前
自信鞯发布了新的文献求助10
16秒前
江北小赵完成签到,获得积分10
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794