Spatial–Spectral Similarity Based on Adaptive Region for Landslide Inventory Mapping With Remote-Sensed Images

遥感 山崩 相似性(几何) 地质学 计算机视觉 计算机科学 人工智能 地貌学 图像(数学)
作者
Zhiyong Lv,Tianyuan Yang,Tao Lei,Weiwei Zhou,Zhou Zhang,Zhenzhen You
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:1
标识
DOI:10.1109/tgrs.2024.3380199
摘要

Landslide is one of the most serious geological disasters around the world, and acquiring landslide inventory mapping (LIM) with remote sensed images (RSIs) plays an important role in disaster relief. However, various external imaging conditions of bitemporal RSIs usually cause pseudo-changes and challenges for achieving satisfied LIMs. In this article, a pioneering change magnitude measured distance named Spectral-Spatial Similarity based on Adaptive Region (S 3 AR) is proposed for achieving LIMs with bitemporal RSIs. First, an adaptive region is proposed to utilize the spatial-contextual information around each pixel, because the shapes and size of a landslide site are usually irregular and unpredictable. Then, a shape description algorithm is proposed for constructing a shape description vector, which aims at measuring the spatial difference of adaptive regions. Finally, to improve the separability between the landslide area and the background, brightness is suggested to couple with the shape description vector of an adaptive region to generate spatial-spectral similarity to measure the change magnitude between pairwise adaptive regions from the bitemporal RSIs. When the entire bitemporal RSIs are scanned and calculated via these steps, a change magnitude image between bitemporal RSIs can be generated, and then binary LIMs are obtained by a binary threshold. Experiments based on comparing eight state-of-the-art approaches demonstrated the feasibility and superiorities of the proposed S3AR for achieving LIMs with bitemporal RSIs. For example, the improvements on the four datasets are 5.81%, 14.06%, 6.03%, and 20.51% in terms of total error.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
基尼胎没完成签到 ,获得积分20
2秒前
3秒前
大佬来教我完成签到,获得积分10
4秒前
顾矜应助lunan采纳,获得10
4秒前
楠楠小猪完成签到,获得积分10
5秒前
Fury发布了新的文献求助10
7秒前
8秒前
9秒前
dan应助紫熊采纳,获得10
10秒前
ding应助伶俐的招牌采纳,获得10
10秒前
研友完成签到 ,获得积分10
10秒前
11秒前
甜甜发布了新的文献求助10
12秒前
卡奇Mikey完成签到,获得积分10
12秒前
12秒前
14秒前
小叮当发布了新的文献求助10
15秒前
赘婿应助jackten采纳,获得10
15秒前
lunan发布了新的文献求助10
17秒前
小猫多鱼完成签到,获得积分10
17秒前
colddie发布了新的文献求助10
17秒前
乐乐应助李欣宇采纳,获得10
18秒前
画图发布了新的文献求助10
19秒前
19秒前
可爱的函函应助Desire采纳,获得10
19秒前
赘婿应助Chaga采纳,获得10
21秒前
在水一方应助破忒头采纳,获得10
21秒前
22秒前
假装超人会飞完成签到,获得积分10
22秒前
23秒前
23秒前
27秒前
lzj001983发布了新的文献求助10
28秒前
宇宙之王宙斯完成签到 ,获得积分10
28秒前
化学元素完成签到 ,获得积分10
29秒前
29秒前
Singularity应助中恐采纳,获得20
30秒前
Qianwy完成签到,获得积分20
31秒前
hoongyan完成签到 ,获得积分10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137539
求助须知:如何正确求助?哪些是违规求助? 2788516
关于积分的说明 7787054
捐赠科研通 2444818
什么是DOI,文献DOI怎么找? 1300043
科研通“疑难数据库(出版商)”最低求助积分说明 625784
版权声明 601023