亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Spatial–Spectral Similarity Based on Adaptive Region for Landslide Inventory Mapping With Remote-Sensed Images

遥感 山崩 相似性(几何) 地质学 计算机视觉 计算机科学 人工智能 地貌学 图像(数学)
作者
Zhiyong Lv,Tianyuan Yang,Tao Lei,Weiwei Zhou,Zhou Zhang,Zhenzhen You
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-11 被引量:1
标识
DOI:10.1109/tgrs.2024.3380199
摘要

Landslide is one of the most serious geological disasters around the world, and acquiring landslide inventory mapping (LIM) with remote sensed images (RSIs) plays an important role in disaster relief. However, various external imaging conditions of bitemporal RSIs usually cause pseudo-changes and challenges for achieving satisfied LIMs. In this article, a pioneering change magnitude measured distance named Spectral-Spatial Similarity based on Adaptive Region (S 3 AR) is proposed for achieving LIMs with bitemporal RSIs. First, an adaptive region is proposed to utilize the spatial-contextual information around each pixel, because the shapes and size of a landslide site are usually irregular and unpredictable. Then, a shape description algorithm is proposed for constructing a shape description vector, which aims at measuring the spatial difference of adaptive regions. Finally, to improve the separability between the landslide area and the background, brightness is suggested to couple with the shape description vector of an adaptive region to generate spatial-spectral similarity to measure the change magnitude between pairwise adaptive regions from the bitemporal RSIs. When the entire bitemporal RSIs are scanned and calculated via these steps, a change magnitude image between bitemporal RSIs can be generated, and then binary LIMs are obtained by a binary threshold. Experiments based on comparing eight state-of-the-art approaches demonstrated the feasibility and superiorities of the proposed S3AR for achieving LIMs with bitemporal RSIs. For example, the improvements on the four datasets are 5.81%, 14.06%, 6.03%, and 20.51% in terms of total error.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
科研米虫发布了新的文献求助10
14秒前
15秒前
AXX041795发布了新的文献求助10
22秒前
李健应助冷酷的涵易采纳,获得10
24秒前
31秒前
36秒前
FLANKS发布了新的文献求助10
41秒前
平淡的衣完成签到,获得积分10
48秒前
NexusExplorer应助AXX041795采纳,获得10
55秒前
星星科语发布了新的文献求助10
55秒前
简单发布了新的文献求助20
56秒前
魔幻的芳完成签到,获得积分10
1分钟前
SSY发布了新的文献求助10
1分钟前
火星上的宝马完成签到,获得积分10
1分钟前
平淡的衣发布了新的文献求助20
1分钟前
1分钟前
悲凉的忆南完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
陈旧完成签到,获得积分10
1分钟前
1分钟前
1分钟前
欣欣子完成签到,获得积分10
1分钟前
虚拟的清炎完成签到 ,获得积分10
1分钟前
sunstar完成签到,获得积分10
1分钟前
XXXXXX发布了新的文献求助10
1分钟前
yxl完成签到,获得积分10
1分钟前
可耐的盈完成签到,获得积分10
1分钟前
绿毛水怪完成签到,获得积分10
1分钟前
yg发布了新的文献求助10
1分钟前
lsc完成签到,获得积分10
1分钟前
XXXXXX完成签到,获得积分10
1分钟前
1分钟前
星星科语完成签到,获得积分20
1分钟前
小fei完成签到,获得积分10
1分钟前
andrele发布了新的文献求助10
1分钟前
麻辣薯条完成签到,获得积分10
1分钟前
hanlin给滕祥的求助进行了留言
1分钟前
时尚身影完成签到,获得积分10
1分钟前
leoduo完成签到,获得积分0
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187