Abstract 3510: A radiogenomic approach for triple-negative breast cancer risk stratification

医学 乳腺癌 危险分层 癌症 内科学 肿瘤科
作者
Humaira Noor,Yuanning Zheng,A. Mantz,Ryle Zhou,Andrew Kozlov,Wendy B. DeMartini,Shu-Tian Chen,Satoko Okamoto,Debra M. Ikeda,Sarah A. Mattonen,Sandy Napel,Melinda L. Telli,George W. Sledge,Allison W. Kurian,Mina Satoyoshi,Olivier Gevaert,Haruka Itakura
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (6_Supplement): 3510-3510
标识
DOI:10.1158/1538-7445.am2024-3510
摘要

Abstract Background: Triple-negative breast cancer (TNBC) is an aggressive disease that accounts for 15-20% of all breast cancers. Expressions of ER, PR and HER2 receptors are lacking in this disease, and thus targeted therapies are not effective. TNBC has a shorter relapse-free survival, higher metastasis rate and decreased overall survival compared with other breast cancers. However, when undergoing standard treatment, some patients respond well, while others have poor outcome, suggesting TNBC heterogeneity. Early stratification of patients with long versus short survival could identify the subgroup of patients who would not benefit from exposure to toxicity of chemotherapy treatment. Here, we developed a non-invasive radiogenomic approach for TNBC risk stratification. Methods: A transcriptomic-based prognostic gene signature was previously developed using the TCGA-BRCA cohort (n=860). Briefly, LASSO Cox regression model analysis with the ‘glmnet’ R package was used to identify the transcriptomic signature gene-set consisting of 50 genes. We tested this signature to prognosticate overall survival in a Stanford cohort (n=63) and a previously published SCANB cohort (n=604). The patients were stratified into high- and low-risk groups based on the median risk-score. Next, we developed a machine learning model that identified a radiomic feature set to predict the prognostic transcriptomic risk-groups. Radiomic features were extracted from pre-treatment breast MRI. Radiomics features were extracted using PyRadiomics. The model utilized Decision Tree Classifier and LeaveOneOut method was used for cross-validation. Results: The transcriptomic signature low-risk group was significantly associated with improved overall survival in the two TNBC cohorts, with hazard ratios of 0.11 [95% CI: 0.01-0.88] for the Stanford cohort and 0.71 [95% CI: 0.52-0.97] for the SCANB cohort (log-rank p-values p=0.012 and p=0.032, respectively). Including this transcriptomic signature in a multivariate analysis, which adjusted for clinical features (patient age, grade, stage and Ki67%), the transcriptomic prognostic signature remained a significant prognostic factor (p<0.05). The radiomic feature set (consisting of 20 features) predicted the high- and low-risk transcriptomic groups with a mean accuracy of 72.2% and a mean AUROC of 71%. The precision, F1 and recall scores were 67%, 74% and 82%, respectively. In an independent dataset consisting of 116 Stanford TNBC patients, we used this model to predict risk groups based on the MRI radiomics features, and evaluated the prognostic effects of predicted risk groups. The overall survival of the predicted high-risk group was significantly poorer than the predicted low-risk group (p=0.013). Conclusions: We present a prognostic model that can non-invasively stratify TNBC patients for low versus high mortality risk using radiomic features derived from pre-treatment patient MRI data. Citation Format: Humaira Noor, Yuanning Zheng, Adam Mantz, Ryle Zhou, Andrew Kozlov, Wendy B. DeMartini, Shu-tian Chen, Satoko Okamoto, Debra Ikeda, Sarah Mattonen, Sandy Napel, Melinda L. Telli, George Sledge, Allison Kurian, Mina Satoyoshi, Olivier Gevaert, Haruka Itakura. A radiogenomic approach for triple-negative breast cancer risk stratification [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2024; Part 1 (Regular Abstracts); 2024 Apr 5-10; San Diego, CA. Philadelphia (PA): AACR; Cancer Res 2024;84(6_Suppl):Abstract nr 3510.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美无敌发布了新的文献求助10
刚刚
叶菲菲发布了新的文献求助10
2秒前
LIO完成签到,获得积分20
2秒前
yinbin完成签到,获得积分10
4秒前
袁大头发布了新的文献求助10
5秒前
norman发布了新的文献求助10
6秒前
6秒前
yehata发布了新的文献求助10
9秒前
10秒前
林森举报凉雨渲求助涉嫌违规
11秒前
norman完成签到,获得积分10
11秒前
RC_Wang给robin的求助进行了留言
12秒前
13秒前
13秒前
福居菜鸟完成签到,获得积分10
13秒前
充电宝应助谨慎乞采纳,获得10
14秒前
传奇3应助a方舟采纳,获得10
14秒前
精神世界完成签到,获得积分10
14秒前
sgt发布了新的文献求助10
15秒前
16秒前
Yansz发布了新的文献求助10
18秒前
jinze完成签到 ,获得积分10
19秒前
CipherSage应助lincsh采纳,获得10
20秒前
机灵的冰夏完成签到,获得积分10
20秒前
123456787899发布了新的文献求助10
20秒前
人123456完成签到,获得积分10
20秒前
22秒前
23秒前
啊啊啊发布了新的文献求助10
24秒前
SciGPT应助Yansz采纳,获得10
24秒前
24秒前
Spice完成签到 ,获得积分10
25秒前
25秒前
皮卡丘完成签到 ,获得积分10
26秒前
27秒前
快乐慕灵完成签到,获得积分10
27秒前
zzz发布了新的文献求助10
28秒前
谨慎乞发布了新的文献求助10
28秒前
爱吃鲷鱼烧完成签到,获得积分20
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3522962
求助须知:如何正确求助?哪些是违规求助? 3103939
关于积分的说明 9268115
捐赠科研通 2800675
什么是DOI,文献DOI怎么找? 1537078
邀请新用户注册赠送积分活动 715396
科研通“疑难数据库(出版商)”最低求助积分说明 708777