Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods

计算机科学 特征选择 计算科学与工程 特征(语言学) 选择(遗传算法) 价值(数学) 数据科学 人工智能 机器学习 哲学 语言学
作者
Huanjing Wang,Qianxin Liang,John Hancock,Taghi M. Khoshgoftaar
出处
期刊:Journal of Big Data [Springer Nature]
卷期号:11 (1) 被引量:9
标识
DOI:10.1186/s40537-024-00905-w
摘要

Abstract In the context of high-dimensional credit card fraud data, researchers and practitioners commonly utilize feature selection techniques to enhance the performance of fraud detection models. This study presents a comparison in model performance using the most important features selected by SHAP (SHapley Additive exPlanations) values and the model’s built-in feature importance list. Both methods rank features and choose the most significant ones for model assessment. To evaluate the effectiveness of these feature selection techniques, classification models are built using five classifiers: XGBoost, Decision Tree, CatBoost, Extremely Randomized Trees, and Random Forest. The Area under the Precision-Recall Curve (AUPRC) serves as the evaluation metric. All experiments are executed on the Kaggle Credit Card Fraud Detection Dataset. The experimental outcomes and statistical tests indicate that feature selection methods based on importance values outperform those based on SHAP values across classifiers and various feature subset sizes. For models trained on larger datasets, it is recommended to use the model’s built-in feature importance list as the primary feature selection method over SHAP. This suggestion is based on the rationale that computing SHAP feature importance is a distinct activity, while models naturally provide built-in feature importance as part of the training process, requiring no additional effort. Consequently, opting for the model’s built-in feature importance list can offer a more efficient and practical approach for larger datasets and more intricate models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LETHE完成签到,获得积分10
刚刚
zz完成签到,获得积分10
1秒前
黄金矿工完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
程艳完成签到 ,获得积分10
4秒前
039Hc发布了新的文献求助20
5秒前
5秒前
6秒前
6秒前
大模型应助乐正问枫采纳,获得30
6秒前
7秒前
7秒前
8秒前
8秒前
梁京完成签到,获得积分10
9秒前
9秒前
9秒前
jimmy发布了新的文献求助10
9秒前
10秒前
qiuxin完成签到,获得积分10
10秒前
17852573662完成签到,获得积分10
11秒前
麟梦寒发布了新的文献求助10
12秒前
CCC发布了新的文献求助10
13秒前
11完成签到,获得积分10
13秒前
汉桑波欸发布了新的文献求助10
14秒前
14秒前
酷炫抽屉完成签到 ,获得积分10
14秒前
14秒前
露露应助DE2022采纳,获得10
14秒前
欧拉完成签到,获得积分10
15秒前
笑笑丶不爱笑完成签到,获得积分10
15秒前
jimmy完成签到,获得积分10
15秒前
阿腾发布了新的文献求助10
16秒前
Wk应助shi hui采纳,获得10
17秒前
firsttt完成签到,获得积分10
17秒前
乐乐应助小吴同学采纳,获得10
18秒前
今后应助优雅的大娘采纳,获得10
19秒前
19秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
Ribozymes and aptamers in the RNA world, and in synthetic biology 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180636
求助须知:如何正确求助?哪些是违规求助? 2830962
关于积分的说明 7981889
捐赠科研通 2492629
什么是DOI,文献DOI怎么找? 1329721
科研通“疑难数据库(出版商)”最低求助积分说明 635798
版权声明 602954