Feature selection strategies: a comparative analysis of SHAP-value and importance-based methods

计算机科学 特征选择 计算科学与工程 特征(语言学) 选择(遗传算法) 价值(数学) 数据科学 人工智能 机器学习 哲学 语言学
作者
Huanjing Wang,Qianxin Liang,John Hancock,Taghi M. Khoshgoftaar
出处
期刊:Journal of Big Data [Springer Science+Business Media]
卷期号:11 (1) 被引量:35
标识
DOI:10.1186/s40537-024-00905-w
摘要

Abstract In the context of high-dimensional credit card fraud data, researchers and practitioners commonly utilize feature selection techniques to enhance the performance of fraud detection models. This study presents a comparison in model performance using the most important features selected by SHAP (SHapley Additive exPlanations) values and the model’s built-in feature importance list. Both methods rank features and choose the most significant ones for model assessment. To evaluate the effectiveness of these feature selection techniques, classification models are built using five classifiers: XGBoost, Decision Tree, CatBoost, Extremely Randomized Trees, and Random Forest. The Area under the Precision-Recall Curve (AUPRC) serves as the evaluation metric. All experiments are executed on the Kaggle Credit Card Fraud Detection Dataset. The experimental outcomes and statistical tests indicate that feature selection methods based on importance values outperform those based on SHAP values across classifiers and various feature subset sizes. For models trained on larger datasets, it is recommended to use the model’s built-in feature importance list as the primary feature selection method over SHAP. This suggestion is based on the rationale that computing SHAP feature importance is a distinct activity, while models naturally provide built-in feature importance as part of the training process, requiring no additional effort. Consequently, opting for the model’s built-in feature importance list can offer a more efficient and practical approach for larger datasets and more intricate models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
中和皇极应助曹沛岚采纳,获得10
2秒前
安生生发布了新的文献求助10
2秒前
花花发布了新的文献求助10
3秒前
杜兰特发布了新的文献求助10
4秒前
5秒前
阿槿发布了新的文献求助20
6秒前
丰那个丰发布了新的文献求助10
6秒前
7秒前
7秒前
cc完成签到,获得积分10
7秒前
石力完成签到 ,获得积分10
7秒前
a123发布了新的文献求助10
8秒前
lxcy0612发布了新的文献求助10
12秒前
13秒前
wanci应助丰那个丰采纳,获得10
13秒前
a123完成签到,获得积分10
15秒前
阔达冰兰完成签到,获得积分20
15秒前
16秒前
核桃发布了新的文献求助10
17秒前
幸福大白发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
独特的秋应助爱笑紫菜采纳,获得30
20秒前
Arya123000完成签到,获得积分10
20秒前
20秒前
小马发布了新的文献求助10
22秒前
布可完成签到,获得积分10
22秒前
研友_VZG7GZ应助俭朴八宝粥采纳,获得10
23秒前
明亮安双发布了新的文献求助10
23秒前
Claire完成签到 ,获得积分10
24秒前
Arya123000发布了新的文献求助10
25秒前
25秒前
可爱的函函应助陶醉晓凡采纳,获得10
26秒前
wanci应助Heartlark采纳,获得10
26秒前
学术裁缝发布了新的文献求助10
29秒前
时光完成签到,获得积分10
30秒前
科研通AI5应助积极问晴采纳,获得10
33秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993503
求助须知:如何正确求助?哪些是违规求助? 3534194
关于积分的说明 11264895
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806259
邀请新用户注册赠送积分活动 883055
科研通“疑难数据库(出版商)”最低求助积分说明 809702