Deep Potential fitting and mechanical properties study of MgAlSi alloy

合金 材料科学 冶金
作者
Changsheng Zhu,Wenjing Dong,Zihao Gao,Lijun Wang,Guangzhao Li
出处
期刊:Computational Materials Science [Elsevier]
卷期号:239: 112966-112966 被引量:6
标识
DOI:10.1016/j.commatsci.2024.112966
摘要

MgAlSi alloy materials have the main properties of light weight and high strength, good electrical and thermal conductivity and corrosion resistance, and have various applications in the industrial field, making an important contribution to the realization of lightweight and high performance needs. In order to be able to predict the material properties of MgAlSi alloys with a high degree of accuracy, this paper develops for the first time an interatomic potential function for MgAlSi alloys based on a neural network machine learning approach. The effectiveness of the developed machine learning potentials is verified by analyzing the problems encountered during the training process and the errors of the finally obtained potential functions, and comparing some of the radial distribution functions, coordination numbers, and predictions of properties such as the equation of state, lattice constants, shear modulus and bulk modulus with those of AIMD. It is found that the performance error of the deep potential model is basically kept in the same order of magnitude as that of DFT calculations, the computational speed can be up to nearly a thousand times that of DFT, and the computational cost is linearly related to the atomic number, which is well suited for large-scale molecular dynamics simulations, and it will provide a promising solution for accurate large-scale molecular dynamics simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助等乙天采纳,获得10
1秒前
光亮笑柳发布了新的文献求助10
1秒前
1秒前
明亮百川发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
ATTENTION完成签到,获得积分10
3秒前
Sere完成签到,获得积分10
4秒前
浮游应助yyj采纳,获得10
4秒前
4秒前
历史真相完成签到,获得积分20
5秒前
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
xiaoxiao1992应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
元昭诩应助科研通管家采纳,获得10
5秒前
李健应助科研通管家采纳,获得10
5秒前
香蕉诗蕊应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
脑洞疼应助科研通管家采纳,获得30
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
Stella应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
Jasper应助科研通管家采纳,获得10
6秒前
6秒前
yznfly应助科研通管家采纳,获得20
6秒前
SJJ应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
大个应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
Stella应助科研通管家采纳,获得10
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563294
求助须知:如何正确求助?哪些是违规求助? 4648146
关于积分的说明 14683749
捐赠科研通 4590165
什么是DOI,文献DOI怎么找? 2518308
邀请新用户注册赠送积分活动 1491038
关于科研通互助平台的介绍 1462325