End-to-End RGB-D Image Compression via Exploiting Channel-Modality Redundancy

端到端原则 冗余(工程) 计算机科学 图像压缩 模态(人机交互) 计算机视觉 人工智能 图像(数学) 图像处理 操作系统
作者
Huiming Zheng,Wei Gao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (7): 7562-7570 被引量:5
标识
DOI:10.1609/aaai.v38i7.28588
摘要

As a kind of 3D data, RGB-D images have been extensively used in object tracking, 3D reconstruction, remote sensing mapping, and other tasks. In the realm of computer vision, the significance of RGB-D images is progressively growing. However, the existing learning-based image compression methods usually process RGB images and depth images separately, which cannot entirely exploit the redundant information between the modalities, limiting the further improvement of the Rate-Distortion performance. With the goal of overcoming the defect, in this paper, we propose a learning-based dual-branch RGB-D image compression framework. Compared with traditional RGB domain compression scheme, a YUV domain compression scheme is presented for spatial redundancy removal. In addition, Intra-Modality Attention (IMA) and Cross-Modality Attention (CMA) are introduced for modal redundancy removal. For the sake of benefiting from cross-modal prior information, Context Prediction Module (CPM) and Context Fusion Module (CFM) are raised in the conditional entropy model which makes the context probability prediction more accurate. The experimental results demonstrate our method outperforms existing image compression methods in two RGB-D image datasets. Compared with BPG, our proposed framework can achieve up to 15% bit rate saving for RGB images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
科研通AI2S应助lyx采纳,获得10
3秒前
Zoe013发布了新的文献求助10
4秒前
企鹅完成签到,获得积分20
5秒前
5秒前
5秒前
天神发布了新的文献求助10
6秒前
6秒前
naturehome完成签到,获得积分10
6秒前
7秒前
顺利滑板发布了新的文献求助10
7秒前
10秒前
11秒前
小蓝发布了新的文献求助10
11秒前
科研通AI5应助allen7u采纳,获得10
11秒前
完美世界应助单薄二娘采纳,获得10
11秒前
冯俊驰发布了新的文献求助10
11秒前
11秒前
李健应助zhangjianan采纳,获得10
11秒前
12秒前
赘婿应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
桐桐应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
思源应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得30
13秒前
乐乐应助科研通管家采纳,获得30
13秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
wswswsws应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
周鑫喆完成签到 ,获得积分10
13秒前
浮游应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得30
13秒前
顾矜应助科研通管家采纳,获得10
13秒前
加菲丰丰应助科研通管家采纳,获得10
13秒前
科研通AI6应助科研通管家采纳,获得10
13秒前
大模型应助yeandpeng采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950785
求助须知:如何正确求助?哪些是违规求助? 4213480
关于积分的说明 13104665
捐赠科研通 3995409
什么是DOI,文献DOI怎么找? 2186899
邀请新用户注册赠送积分活动 1202125
关于科研通互助平台的介绍 1115408