End-to-End RGB-D Image Compression via Exploiting Channel-Modality Redundancy

端到端原则 冗余(工程) 计算机科学 图像压缩 模态(人机交互) 计算机视觉 人工智能 图像(数学) 图像处理 操作系统
作者
Huiming Zheng,Wei Gao
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (7): 7562-7570 被引量:5
标识
DOI:10.1609/aaai.v38i7.28588
摘要

As a kind of 3D data, RGB-D images have been extensively used in object tracking, 3D reconstruction, remote sensing mapping, and other tasks. In the realm of computer vision, the significance of RGB-D images is progressively growing. However, the existing learning-based image compression methods usually process RGB images and depth images separately, which cannot entirely exploit the redundant information between the modalities, limiting the further improvement of the Rate-Distortion performance. With the goal of overcoming the defect, in this paper, we propose a learning-based dual-branch RGB-D image compression framework. Compared with traditional RGB domain compression scheme, a YUV domain compression scheme is presented for spatial redundancy removal. In addition, Intra-Modality Attention (IMA) and Cross-Modality Attention (CMA) are introduced for modal redundancy removal. For the sake of benefiting from cross-modal prior information, Context Prediction Module (CPM) and Context Fusion Module (CFM) are raised in the conditional entropy model which makes the context probability prediction more accurate. The experimental results demonstrate our method outperforms existing image compression methods in two RGB-D image datasets. Compared with BPG, our proposed framework can achieve up to 15% bit rate saving for RGB images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CipherSage应助Hana采纳,获得30
2秒前
2秒前
111发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
michael完成签到,获得积分10
3秒前
3秒前
景穆完成签到,获得积分10
3秒前
3秒前
像个小蛤蟆完成签到 ,获得积分10
4秒前
4秒前
4秒前
墨旱莲完成签到,获得积分10
5秒前
weige发布了新的文献求助10
5秒前
5秒前
不配.应助jianglu采纳,获得20
5秒前
SciGPT应助chen采纳,获得10
5秒前
Orange应助科研狗采纳,获得10
8秒前
8秒前
zhaoming发布了新的文献求助10
8秒前
8秒前
9秒前
韵寒应助东东呀采纳,获得10
9秒前
呵呵喊我完成签到,获得积分10
10秒前
完美世界应助weige采纳,获得10
10秒前
xq1213发布了新的文献求助10
10秒前
11秒前
天天快乐应助zhouyou采纳,获得10
12秒前
12秒前
IBMffff应助科研新秀z采纳,获得10
12秒前
无名发布了新的文献求助10
12秒前
华仔应助一一采纳,获得10
13秒前
安详书蝶完成签到,获得积分10
13秒前
13秒前
chn丶楠完成签到,获得积分10
13秒前
13秒前
14秒前
张三万完成签到 ,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144018
求助须知:如何正确求助?哪些是违规求助? 2795670
关于积分的说明 7815932
捐赠科研通 2451682
什么是DOI,文献DOI怎么找? 1304642
科研通“疑难数据库(出版商)”最低求助积分说明 627255
版权声明 601419