胰岛素抵抗
血管舒张
胰岛素
骨骼肌
内科学
医学
脂肪组织
内分泌学
高胰岛素血症
内皮
白色脂肪组织
生物
作者
Md Torikul Islam,Jinjin Cai,Shanena Allen,Denisse Gabriela Moreno-Sandoval,Samuel I. Bloom,R. Colton Bramwell,Jonathan Mitton,Andrew G. Horn,Weiquan Zhu,Anthony J. Donato,William L. Holland,Lisa A. Lesniewski
标识
DOI:10.1161/atvbaha.123.319375
摘要
BACKGROUND: Much of what we know about insulin resistance is based on studies from metabolically active tissues such as the liver, adipose tissue, and skeletal muscle. Emerging evidence suggests that the vascular endothelium plays a crucial role in systemic insulin resistance; however, the underlying mechanisms remain incompletely understood. Arf6 (ADP ribosylation factor 6) is a small GTPase that plays a critical role in endothelial cell function. Here, we tested the hypothesis that the deletion of endothelial Arf6 will result in systemic insulin resistance. METHODS: We used mouse models of constitutive endothelial cell–specific Arf6 deletion (Arf6 f/− Tie2Cre + ) and tamoxifen-inducible Arf6 knockout (Arf6 f/f Cdh5CreER+). Endothelium-dependent vasodilation was assessed using pressure myography. Metabolic function was assessed using a battery of metabolic assessments including glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamps. We used a fluorescence microsphere–based technique to measure tissue blood flow. Skeletal muscle capillary density was assessed using intravital microscopy. RESULTS: Endothelial Arf6 deletion impaired insulin-stimulated vasodilation in white adipose tissue and skeletal muscle feed arteries. The impairment in vasodilation was primarily due to attenuated insulin-stimulated nitric oxide bioavailability but independent of altered acetylcholine-mediated or sodium nitroprusside–mediated vasodilation. Endothelial cell–specific deletion of Arf6 also resulted in systematic insulin resistance in normal chow–fed mice and glucose intolerance in high-fat diet–fed obese mice. The underlying mechanisms of glucose intolerance were reductions in insulin-stimulated blood flow and glucose uptake in the skeletal muscle and were independent of changes in capillary density or vascular permeability. CONCLUSIONS: Results from this study support the conclusion that endothelial Arf6 signaling is essential for maintaining insulin sensitivity. Reduced expression of endothelial Arf6 impairs insulin-mediated vasodilation and results in systemic insulin resistance. These results have therapeutic implications for diseases that are associated with endothelial cell dysfunction and insulin resistance such as diabetes.
科研通智能强力驱动
Strongly Powered by AbleSci AI