Artificial neural network for drying behavior prediction of paddy in developed chamber fluidized–bed dryer

流化床 人工神经网络 环境科学 工程类 人工智能 工艺工程 石油工程 废物管理 计算机科学
作者
Suriya Chokphoemphun,Somporn Hongkong,Suriya Chokphoemphun
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:220: 108888-108888
标识
DOI:10.1016/j.compag.2024.108888
摘要

After rice is harvested, it must be dried before its products can be stored. Therefore, this paper presented a novel and simple method for improving paddy drying process in a column fluidized bed dryer. Additionally, artificial neural network methods were applied to predict the drying behavior. The experiments were conducted under two different drying chamber characteristics (a conventional chamber and a chamber fitted with nozzle) and four different air flow velocities (3.03, 3.52, 4.12 and 4.85 m/s) at a drying air temperature of 60 °C. The results showed that the chamber fitted with the nozzle reduced the drying time by approximately 67, 52 and 38 % at the air velocity of 3.52, 4.12 and 4.85 m/s, respectively. The specified experimental conditions and the calculated moisture content of the paddy in this work were used as input and output data for the artificial neural network, respectively, to predict drying characteristics. The artificial neural networks were developed with various parameters, including activation function, sampling type, split ratio, number of neurons and epoch number. The optimal model provided the root mean squared error of 0.111 and the coefficient of determination of 0.999. The best prediction was observed in the model using rectifier activation function with a split ratio of 0.85, epoch number of 1800, and 50 and 90 neurons in the first and second hidden layers, respectively.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qh发布了新的文献求助10
刚刚
3秒前
李爱国应助zhuzhezhe采纳,获得30
5秒前
科研通AI5应助默默书竹采纳,获得10
6秒前
8秒前
9秒前
阿晓晓发布了新的文献求助10
10秒前
159完成签到,获得积分10
10秒前
14秒前
蓝莓贝果发布了新的文献求助30
14秒前
xxxllllll发布了新的文献求助10
14秒前
Enzymisc完成签到,获得积分10
18秒前
默默书竹发布了新的文献求助10
19秒前
20秒前
21秒前
WHEN给WHEN的求助进行了留言
23秒前
23秒前
24秒前
25秒前
铠甲勇士发布了新的文献求助10
25秒前
交交阿鱼完成签到,获得积分10
26秒前
哈哈发布了新的文献求助10
26秒前
ruhemann发布了新的文献求助10
30秒前
英姑应助铠甲勇士采纳,获得10
31秒前
36秒前
xier完成签到 ,获得积分10
38秒前
40秒前
40秒前
劲秉应助学霸宇大王采纳,获得10
40秒前
44秒前
bc应助454采纳,获得30
47秒前
感性的穆发布了新的文献求助10
49秒前
星星轨迹完成签到,获得积分10
52秒前
54秒前
Owen应助junze采纳,获得10
57秒前
很牛的ID发布了新的文献求助10
59秒前
ZY关注了科研通微信公众号
59秒前
1分钟前
舒适的星月完成签到,获得积分10
1分钟前
隐形曼青应助发发发采纳,获得10
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3669998
求助须知:如何正确求助?哪些是违规求助? 3227414
关于积分的说明 9775372
捐赠科研通 2937577
什么是DOI,文献DOI怎么找? 1609384
邀请新用户注册赠送积分活动 760339
科研通“疑难数据库(出版商)”最低求助积分说明 735792