MMGInpainting: Multi-Modality Guided Image Inpainting Based on Diffusion Models

修补 计算机科学 人工智能 图像(数学) 模态(人机交互) 计算机视觉 模式识别(心理学)
作者
Cong Zhang,Wenxia Yang,Xin Li,Huan Han
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8811-8823 被引量:16
标识
DOI:10.1109/tmm.2024.3382484
摘要

Proper inference of semantics is necessary for realistic image inpainting. Most image inpainting methods use deep generative models, which require large image datasets to predict and generate content. However, predicting the missing regions and generating coherent content is difficult due to limited control. Existing approaches include image-guided or text-guided image inpainting, but none of them has taken both image and text as the guidance signals, as far as we know. To fill this gap, we propose a multi-modality guided (MMG) image inpainting approach based on the diffusion model. This MMGInpainting method uses both image and text as guidance for generating content within the target area for inpainting, effectively integrating the semantic information conveyed by the guiding image or text into the content of the inpainted region. To construct MMGInpainting, we start by enhancing the U-Net backbone with a customized Nonlinear Activation Free Network (NAFNet). This adapted NAFNet incorporates an Anchored Stripe Attention mechanism, which utilizes anchor points to effectively model global contextual dependencies. To regulate inpainting, we use a Semantic Fusion Encoder to guide the inverse process of the diffusion model. The process is iteratively executed to denoise and generate the desired inpainting result. Additionally, we explore how different modes of meaning interact and coordinate to offer users useful guidance for a more manageable inpainting procedure. Experimental results demonstrate that our approach produces faithful results adhering to the guiding information, while significantly improving computational efficiency. Github Repository: https://github.com/skipper-zc/MMGInpainting/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大椰完成签到,获得积分10
刚刚
圆又圆发布了新的文献求助10
刚刚
1秒前
鹅糖发布了新的文献求助10
1秒前
Chloe完成签到,获得积分10
2秒前
领导范儿应助rick3455采纳,获得10
2秒前
冉冉完成签到,获得积分10
3秒前
牧星河完成签到,获得积分10
3秒前
gkads完成签到,获得积分10
4秒前
R7完成签到 ,获得积分10
4秒前
白枫发布了新的文献求助10
5秒前
问水完成签到,获得积分10
6秒前
微笑亿先完成签到,获得积分10
6秒前
Maestro_S应助科研通管家采纳,获得10
6秒前
wanci应助科研通管家采纳,获得10
6秒前
脑洞疼应助科研通管家采纳,获得10
6秒前
6秒前
xzn1123应助科研通管家采纳,获得10
6秒前
李大椰发布了新的文献求助10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
田様应助科研通管家采纳,获得10
6秒前
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
Orange应助科研通管家采纳,获得10
6秒前
汉堡包应助科研通管家采纳,获得10
6秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
bkagyin应助科研通管家采纳,获得10
7秒前
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
Maestro_S应助科研通管家采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
今后应助科研通管家采纳,获得10
7秒前
浮游应助科研通管家采纳,获得10
7秒前
xzn1123应助科研通管家采纳,获得10
7秒前
von宵应助科研通管家采纳,获得10
7秒前
天天快乐应助Natural采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
7秒前
7秒前
浮游应助科研通管家采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478020
求助须知:如何正确求助?哪些是违规求助? 4579793
关于积分的说明 14370768
捐赠科研通 4508017
什么是DOI,文献DOI怎么找? 2470377
邀请新用户注册赠送积分活动 1457252
关于科研通互助平台的介绍 1431244