清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

MMGInpainting: Multi-Modality Guided Image Inpainting Based on Diffusion Models

修补 计算机科学 人工智能 图像(数学) 模态(人机交互) 计算机视觉 模式识别(心理学)
作者
Cong Zhang,Wenxia Yang,Xin Li,Huan Han
出处
期刊:IEEE Transactions on Multimedia [Institute of Electrical and Electronics Engineers]
卷期号:26: 8811-8823 被引量:16
标识
DOI:10.1109/tmm.2024.3382484
摘要

Proper inference of semantics is necessary for realistic image inpainting. Most image inpainting methods use deep generative models, which require large image datasets to predict and generate content. However, predicting the missing regions and generating coherent content is difficult due to limited control. Existing approaches include image-guided or text-guided image inpainting, but none of them has taken both image and text as the guidance signals, as far as we know. To fill this gap, we propose a multi-modality guided (MMG) image inpainting approach based on the diffusion model. This MMGInpainting method uses both image and text as guidance for generating content within the target area for inpainting, effectively integrating the semantic information conveyed by the guiding image or text into the content of the inpainted region. To construct MMGInpainting, we start by enhancing the U-Net backbone with a customized Nonlinear Activation Free Network (NAFNet). This adapted NAFNet incorporates an Anchored Stripe Attention mechanism, which utilizes anchor points to effectively model global contextual dependencies. To regulate inpainting, we use a Semantic Fusion Encoder to guide the inverse process of the diffusion model. The process is iteratively executed to denoise and generate the desired inpainting result. Additionally, we explore how different modes of meaning interact and coordinate to offer users useful guidance for a more manageable inpainting procedure. Experimental results demonstrate that our approach produces faithful results adhering to the guiding information, while significantly improving computational efficiency. Github Repository: https://github.com/skipper-zc/MMGInpainting/
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tameiki发布了新的文献求助10
3秒前
知更鸟完成签到,获得积分10
5秒前
ding应助lawang采纳,获得10
9秒前
Ava应助lawang采纳,获得10
9秒前
NexusExplorer应助lawang采纳,获得10
9秒前
小蘑菇应助lawang采纳,获得10
9秒前
深情安青应助lawang采纳,获得10
9秒前
丘比特应助lawang采纳,获得10
9秒前
情怀应助lawang采纳,获得10
9秒前
Owen应助lawang采纳,获得10
9秒前
Hello应助lawang采纳,获得10
9秒前
科研通AI2S应助lawang采纳,获得10
9秒前
乾坤侠客LW完成签到,获得积分10
27秒前
量子星尘发布了新的文献求助10
31秒前
34秒前
1分钟前
1分钟前
1分钟前
hhh完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
lawang发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658175
求助须知:如何正确求助?哪些是违规求助? 4818012
关于积分的说明 15080950
捐赠科研通 4816522
什么是DOI,文献DOI怎么找? 2577459
邀请新用户注册赠送积分活动 1532399
关于科研通互助平台的介绍 1491024