MDCGA-Net: Multi-Scale Direction Context-Aware Network with Global Attention for Building Extraction from Remote Sensing Images

计算机科学 背景(考古学) 比例(比率) 遥感 萃取(化学) 网(多面体) 人工智能 计算机视觉 地质学 地图学 地理 几何学 数学 色谱法 古生物学 化学
作者
Penghui Niu,Junhua Gu,Yajuan Zhang,Ping Zhang,Taotao Cai,Wenjia Xu,Jungong Han
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 8461-8476 被引量:1
标识
DOI:10.1109/jstars.2024.3387969
摘要

Building extraction from remote sensing images (RSIs) requires exploring multi-scale boundary detailed information and extracting it completely, which is challenging but indispensable. However, existing solutions tend to augment feature information solely through multi-scale fusion and apply attention mechanisms to focus on feature relationships within a single layer while ignoring the multi-scale information, which affects segmentation results. Therefore, enhancing the capability of the network to adaptively capture multi-scale information and capture the global relationship of features remains a pivotal challenge in overcoming the aforementioned hurdles. To address the preceding challenge, we propose a Multi-scale Direction Context-aware network with Global Attention (MDCGA-Net), employing a classic encoder-decoder architecture enhanced with direction information and global attention flow. Specifically, in the encoder part, the multi-scale layer (MSL) is used to extract contextual information from the inter-layer. Additionally, the multi-scale direction context-aware module (MDCM) is adopted to adaptively acquire multi-scale information. In the decoder part, we propose a global attention gate module (GAGM) to capture discriminative features. Furthermore, we construct an operation of attention feature flow to obtain the global relationship among the different features with long-range dependencies, which guarantees the integrity of results. Finally, we have performed comprehensive experiments on three public datasets to showcase the efficacy and efficiency of MDCGA-Net in building extraction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助LG采纳,获得30
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
CodeCraft应助阿乾采纳,获得10
2秒前
大模型应助找文献呢采纳,获得10
3秒前
像个小蛤蟆完成签到 ,获得积分10
4秒前
5秒前
太阳狮子完成签到,获得积分10
5秒前
5秒前
在逃野猪完成签到,获得积分10
6秒前
李汀发布了新的文献求助10
7秒前
ZXJ发布了新的文献求助10
7秒前
上官若男应助ljy采纳,获得10
7秒前
8秒前
Ethereal发布了新的文献求助10
8秒前
HX发布了新的文献求助10
9秒前
华仔应助乌苏苏采纳,获得10
9秒前
万能图书馆应助肉桂卷采纳,获得30
11秒前
小二郎应助jinger采纳,获得10
12秒前
123发布了新的文献求助20
12秒前
云鹏完成签到,获得积分10
12秒前
13秒前
我勒个大豆这么好用完成签到,获得积分10
13秒前
kakaa发布了新的文献求助10
14秒前
15秒前
15秒前
15秒前
火烧云发布了新的文献求助10
17秒前
852应助蒸馏水采纳,获得10
17秒前
阿乾发布了新的文献求助10
18秒前
大个应助chai采纳,获得10
18秒前
19秒前
阳光的以莲关注了科研通微信公众号
19秒前
Dr.Wang完成签到,获得积分20
19秒前
HeatherMI发布了新的文献求助10
19秒前
研友_VZG7GZ应助靓丽安萱采纳,获得10
20秒前
量子星尘发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648842
求助须知:如何正确求助?哪些是违规求助? 4776854
关于积分的说明 15045836
捐赠科研通 4807704
什么是DOI,文献DOI怎么找? 2571046
邀请新用户注册赠送积分活动 1527707
关于科研通互助平台的介绍 1486624