MDCGA-Net: Multi-Scale Direction Context-Aware Network with Global Attention for Building Extraction from Remote Sensing Images

计算机科学 背景(考古学) 比例(比率) 遥感 萃取(化学) 网(多面体) 人工智能 计算机视觉 地质学 地图学 地理 古生物学 化学 几何学 数学 色谱法
作者
Penghui Niu,Junhua Gu,Yajuan Zhang,Ping Zhang,Taotao Cai,Wenjia Xu,Jungong Han
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:17: 8461-8476 被引量:1
标识
DOI:10.1109/jstars.2024.3387969
摘要

Building extraction from remote sensing images (RSIs) requires exploring multi-scale boundary detailed information and extracting it completely, which is challenging but indispensable. However, existing solutions tend to augment feature information solely through multi-scale fusion and apply attention mechanisms to focus on feature relationships within a single layer while ignoring the multi-scale information, which affects segmentation results. Therefore, enhancing the capability of the network to adaptively capture multi-scale information and capture the global relationship of features remains a pivotal challenge in overcoming the aforementioned hurdles. To address the preceding challenge, we propose a Multi-scale Direction Context-aware network with Global Attention (MDCGA-Net), employing a classic encoder-decoder architecture enhanced with direction information and global attention flow. Specifically, in the encoder part, the multi-scale layer (MSL) is used to extract contextual information from the inter-layer. Additionally, the multi-scale direction context-aware module (MDCM) is adopted to adaptively acquire multi-scale information. In the decoder part, we propose a global attention gate module (GAGM) to capture discriminative features. Furthermore, we construct an operation of attention feature flow to obtain the global relationship among the different features with long-range dependencies, which guarantees the integrity of results. Finally, we have performed comprehensive experiments on three public datasets to showcase the efficacy and efficiency of MDCGA-Net in building extraction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
faye发布了新的文献求助10
刚刚
1秒前
栓牛哥完成签到,获得积分10
3秒前
4秒前
彭于晏应助ornot君君采纳,获得10
5秒前
6秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
Rondab应助科研通管家采纳,获得10
7秒前
Rondab应助科研通管家采纳,获得10
7秒前
木头人应助科研通管家采纳,获得10
7秒前
核桃应助科研通管家采纳,获得50
7秒前
8秒前
熊猫完成签到,获得积分0
8秒前
慕青应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
orixero应助枯槁赴渊采纳,获得10
8秒前
逸之狐应助科研通管家采纳,获得20
8秒前
yznfly应助科研通管家采纳,获得30
8秒前
汉堡包应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
彭于晏应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
无私的以云完成签到,获得积分10
10秒前
11秒前
sun发布了新的文献求助10
11秒前
852应助苏打采纳,获得10
12秒前
12秒前
13秒前
13秒前
ShengQ发布了新的文献求助10
14秒前
14秒前
CXS发布了新的文献求助30
14秒前
科研工头发布了新的文献求助10
15秒前
研友_8RyzBZ发布了新的文献求助10
15秒前
小二郎应助夏艳青采纳,获得10
15秒前
回眸是明眸完成签到,获得积分10
15秒前
zz发布了新的文献求助10
18秒前
18秒前
Hello应助yao采纳,获得10
18秒前
无花果应助怡然小蚂蚁采纳,获得10
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821