Hybrid Deep Learning and Model-Based Needle Shape Prediction

深度学习 人工智能 计算机科学
作者
Dimitri A. Lezcano,Yernar Zhetpissov,Mariana C. Bernardes,Pedro Moreira,Junichi Tokuda,Jin Seob Kim,Iulian Iordachita
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (11): 18359-18371
标识
DOI:10.1109/jsen.2024.3386120
摘要

Needle insertion using flexible bevel tip needles are a common minimally-invasive surgical technique for prostate cancer interventions. Flexible, asymmetric bevel tip needles enable physicians for complex needle steering techniques to avoid sensitive anatomical structures during needle insertion. For accurate placement of the needle, predicting the trajectory of these needles intra-operatively would greatly reduce the need for frequently needle reinsertions thus improving patient comfort and positive outcomes. However, predicting the trajectory of the needle during insertion is a complex task that has yet to be solved due to random needle-tissue interactions. In this paper, we present and validate for the first time a hybrid deep learning and model-based approach to handle the intra-operative needle shape prediction problem through, leveraging a validated Lie-group theoretic model for needle shape representation. Furthermore, we present a novel self-supervised learning and method in conjunction with the Lie-group shape model for training these networks in the absence of data, enabling further refinement of these networks with transfer learning. Needle shape prediction was performed in single-layer and double-layer homogeneous phantom tissue for C- and S-shape needle insertions. Our method demonstrates an average root-mean-square prediction error of 1.03 mm over a dataset containing approximately 3,000 prediction samples with maximum prediction steps of 110 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝利亚完成签到,获得积分10
刚刚
在水一方应助yy采纳,获得10
刚刚
刚刚
1秒前
4秒前
4秒前
4秒前
DHY发布了新的文献求助10
5秒前
6秒前
南瓜气气完成签到,获得积分10
6秒前
Dahai完成签到,获得积分20
6秒前
Coraline应助幽壑之潜蛟采纳,获得10
6秒前
7秒前
Akim应助木木采纳,获得10
8秒前
斯文败类应助难过的谷芹采纳,获得10
9秒前
书霂完成签到,获得积分10
10秒前
10秒前
wanci应助DHY采纳,获得10
10秒前
10秒前
斯文败类应助tifosi采纳,获得20
10秒前
英吉利25发布了新的文献求助10
11秒前
11秒前
勤劳雁发布了新的文献求助10
11秒前
香蕉觅云应助酷酷阑香采纳,获得10
11秒前
tomorrow完成签到 ,获得积分10
12秒前
12秒前
12秒前
13秒前
赘婿应助Cynthia.Z采纳,获得10
14秒前
天天快乐应助司念者你采纳,获得10
14秒前
linkoop发布了新的文献求助10
15秒前
郴郴发布了新的文献求助10
15秒前
Kerry61发布了新的文献求助10
16秒前
朴素慕灵完成签到 ,获得积分10
17秒前
打打应助迷人的问枫采纳,获得10
17秒前
17秒前
倩倩芊芊发布了新的文献求助10
17秒前
17秒前
18秒前
执着冷安发布了新的文献求助10
18秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966796
求助须知:如何正确求助?哪些是违规求助? 3512322
关于积分的说明 11162614
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793730
邀请新用户注册赠送积分活动 874602
科研通“疑难数据库(出版商)”最低求助积分说明 804432