亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Hybrid Deep Learning and Model-Based Needle Shape Prediction

深度学习 人工智能 计算机科学
作者
Dimitri A. Lezcano,Yernar Zhetpissov,Mariana C. Bernardes,Pedro Moreira,Junichi Tokuda,Jin Seob Kim,Iulian Iordachita
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (11): 18359-18371
标识
DOI:10.1109/jsen.2024.3386120
摘要

Needle insertion using flexible bevel tip needles are a common minimally-invasive surgical technique for prostate cancer interventions. Flexible, asymmetric bevel tip needles enable physicians for complex needle steering techniques to avoid sensitive anatomical structures during needle insertion. For accurate placement of the needle, predicting the trajectory of these needles intra-operatively would greatly reduce the need for frequently needle reinsertions thus improving patient comfort and positive outcomes. However, predicting the trajectory of the needle during insertion is a complex task that has yet to be solved due to random needle-tissue interactions. In this paper, we present and validate for the first time a hybrid deep learning and model-based approach to handle the intra-operative needle shape prediction problem through, leveraging a validated Lie-group theoretic model for needle shape representation. Furthermore, we present a novel self-supervised learning and method in conjunction with the Lie-group shape model for training these networks in the absence of data, enabling further refinement of these networks with transfer learning. Needle shape prediction was performed in single-layer and double-layer homogeneous phantom tissue for C- and S-shape needle insertions. Our method demonstrates an average root-mean-square prediction error of 1.03 mm over a dataset containing approximately 3,000 prediction samples with maximum prediction steps of 110 mm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
4秒前
12秒前
13秒前
量子星尘发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
44秒前
勤劳的斑马完成签到,获得积分10
59秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
量子星尘发布了新的文献求助30
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
阿泽完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666365
求助须知:如何正确求助?哪些是违规求助? 3225436
关于积分的说明 9762962
捐赠科研通 2935270
什么是DOI,文献DOI怎么找? 1607589
邀请新用户注册赠送积分活动 759266
科研通“疑难数据库(出版商)”最低求助积分说明 735188