3D printing of an artificial intelligence-generated patient-specific coronary artery segmentation in a support bath

分割 人工智能 计算机科学 冠状动脉 扬抑 学习迁移 材料科学 生物医学工程 树(集合论) 3D打印 喷嘴 动脉 计算机视觉 医学 机械工程 内科学 工程类 数学 复合材料 数学分析
作者
Serkan Sokmen,Soner Çakmak,İlkay Öksüz
出处
期刊:Biomedical Materials [IOP Publishing]
卷期号:19 (3): 035038-035038 被引量:5
标识
DOI:10.1088/1748-605x/ad3f60
摘要

Abstract Accurate segmentation of coronary artery tree and personalized 3D printing from medical images is essential for CAD diagnosis and treatment. The current literature on 3D printing relies solely on generic models created with different software or 3D coronary artery models manually segmented from medical images. Moreover, there are not many studies examining the bioprintability of a 3D model generated by artificial intelligence (AI) segmentation for complex and branched structures. In this study, deep learning algorithms with transfer learning have been employed for accurate segmentation of the coronary artery tree from medical images to generate printable segmentations. We propose a combination of deep learning and 3D printing, which accurately segments and prints complex vascular patterns in coronary arteries. Then, we performed the 3D printing of the AI-generated coronary artery segmentation for the fabrication of bifurcated hollow vascular structure. Our results indicate improved performance of segmentation with the aid of transfer learning with a Dice overlap score of 0.86 on a test set of 10 coronary tomography angiography images. Then, bifurcated regions from 3D models were printed into the Pluronic F-127 support bath using alginate + glucomannan hydrogel. We successfully fabricated the bifurcated coronary artery structures with high length and wall thickness accuracy, however, the outer diameters of the vessels and length of the bifurcation point differ from the 3D models. The extrusion of unnecessary material, primarily observed when the nozzle moves from left to the right vessel during 3D printing, can be mitigated by adjusting the nozzle speed. Moreover, the shape accuracy can also be improved by designing a multi-axis printhead that can change the printing angle in three dimensions. Thus, this study demonstrates the potential of the use of AI-segmented 3D models in the 3D printing of coronary artery structures and, when further improved, can be used for the fabrication of patient-specific vascular implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助好好采纳,获得10
刚刚
西门凡双完成签到,获得积分10
1秒前
lihua完成签到,获得积分10
1秒前
ting发布了新的文献求助10
1秒前
林夕发布了新的文献求助10
1秒前
奋斗蚂蚁发布了新的文献求助10
2秒前
充电宝应助tangpc采纳,获得10
2秒前
2秒前
2秒前
2秒前
CodeCraft应助charint采纳,获得10
2秒前
3秒前
从容芸完成签到,获得积分10
3秒前
糟糕的雨莲完成签到,获得积分20
3秒前
agrlook完成签到,获得积分10
3秒前
孔乙己完成签到,获得积分10
3秒前
dddd发布了新的文献求助10
3秒前
蛋堡发布了新的文献求助10
4秒前
ZRY完成签到,获得积分10
4秒前
4秒前
稳重醉香完成签到,获得积分10
4秒前
4秒前
是假的完成签到 ,获得积分10
5秒前
ARK完成签到,获得积分20
5秒前
6秒前
6秒前
小菜鸟加油加油完成签到,获得积分10
6秒前
王鹏斐完成签到,获得积分10
6秒前
7秒前
小陈完成签到 ,获得积分10
7秒前
yjwang61发布了新的文献求助10
8秒前
婧婧婧完成签到,获得积分20
8秒前
8秒前
8秒前
9秒前
leaguy发布了新的文献求助10
9秒前
9秒前
杨怡红发布了新的文献求助10
10秒前
郭素玲发布了新的文献求助30
11秒前
LGP完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5477903
求助须知:如何正确求助?哪些是违规求助? 4579712
关于积分的说明 14370069
捐赠科研通 4507919
什么是DOI,文献DOI怎么找? 2470291
邀请新用户注册赠送积分活动 1457179
关于科研通互助平台的介绍 1431135