3D printing of an artificial intelligence-generated patient-specific coronary artery segmentation in a support bath

分割 人工智能 计算机科学 冠状动脉 扬抑 学习迁移 材料科学 生物医学工程 树(集合论) 3D打印 喷嘴 动脉 计算机视觉 医学 机械工程 内科学 工程类 数学 复合材料 数学分析
作者
Serkan Sokmen,Soner Çakmak,İlkay Öksüz
出处
期刊:Biomedical Materials [IOP Publishing]
卷期号:19 (3): 035038-035038 被引量:5
标识
DOI:10.1088/1748-605x/ad3f60
摘要

Abstract Accurate segmentation of coronary artery tree and personalized 3D printing from medical images is essential for CAD diagnosis and treatment. The current literature on 3D printing relies solely on generic models created with different software or 3D coronary artery models manually segmented from medical images. Moreover, there are not many studies examining the bioprintability of a 3D model generated by artificial intelligence (AI) segmentation for complex and branched structures. In this study, deep learning algorithms with transfer learning have been employed for accurate segmentation of the coronary artery tree from medical images to generate printable segmentations. We propose a combination of deep learning and 3D printing, which accurately segments and prints complex vascular patterns in coronary arteries. Then, we performed the 3D printing of the AI-generated coronary artery segmentation for the fabrication of bifurcated hollow vascular structure. Our results indicate improved performance of segmentation with the aid of transfer learning with a Dice overlap score of 0.86 on a test set of 10 coronary tomography angiography images. Then, bifurcated regions from 3D models were printed into the Pluronic F-127 support bath using alginate + glucomannan hydrogel. We successfully fabricated the bifurcated coronary artery structures with high length and wall thickness accuracy, however, the outer diameters of the vessels and length of the bifurcation point differ from the 3D models. The extrusion of unnecessary material, primarily observed when the nozzle moves from left to the right vessel during 3D printing, can be mitigated by adjusting the nozzle speed. Moreover, the shape accuracy can also be improved by designing a multi-axis printhead that can change the printing angle in three dimensions. Thus, this study demonstrates the potential of the use of AI-segmented 3D models in the 3D printing of coronary artery structures and, when further improved, can be used for the fabrication of patient-specific vascular implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddddddl完成签到,获得积分10
刚刚
SYLH应助li采纳,获得10
1秒前
昏睡的蟠桃应助初晨采纳,获得50
1秒前
1秒前
甜美的一笑完成签到,获得积分10
1秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
2秒前
想个名字完成签到,获得积分10
2秒前
逆风飞扬发布了新的文献求助10
3秒前
SHAO应助自觉香旋采纳,获得10
4秒前
ddddddl发布了新的文献求助10
4秒前
lzc完成签到 ,获得积分10
4秒前
今后应助xiao142采纳,获得10
4秒前
4秒前
4秒前
收拾收拾应助惠归尘采纳,获得10
5秒前
LXL发布了新的文献求助10
5秒前
5秒前
ATREE发布了新的文献求助10
6秒前
kecheng应助EasonLi采纳,获得10
6秒前
清晾油完成签到,获得积分10
7秒前
孟婆的碗完成签到,获得积分10
7秒前
田様应助ZHQ采纳,获得10
7秒前
iNk应助zihuan采纳,获得10
8秒前
SHAO应助芝士采纳,获得10
8秒前
8秒前
鬼火完成签到,获得积分10
8秒前
Bio应助秀丽的正豪采纳,获得30
8秒前
小雨发布了新的文献求助10
9秒前
9秒前
飞跃发布了新的文献求助10
9秒前
所所应助丰富钢铁侠采纳,获得30
10秒前
10秒前
kecheng应助健壮的夜天采纳,获得10
10秒前
11秒前
jack完成签到,获得积分10
11秒前
舒心毛衣发布了新的文献求助10
11秒前
南信第一深情完成签到,获得积分10
11秒前
SS完成签到,获得积分10
11秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978596
求助须知:如何正确求助?哪些是违规求助? 3522689
关于积分的说明 11214402
捐赠科研通 3260158
什么是DOI,文献DOI怎么找? 1799770
邀请新用户注册赠送积分活动 878659
科研通“疑难数据库(出版商)”最低求助积分说明 807033