3D printing of an artificial intelligence-generated patient-specific coronary artery segmentation in a support bath

分割 人工智能 计算机科学 冠状动脉 扬抑 学习迁移 材料科学 生物医学工程 树(集合论) 3D打印 喷嘴 动脉 计算机视觉 医学 机械工程 内科学 工程类 数学 复合材料 数学分析
作者
Serkan Sokmen,Soner Çakmak,İlkay Öksüz
出处
期刊:Biomedical Materials [IOP Publishing]
卷期号:19 (3): 035038-035038 被引量:2
标识
DOI:10.1088/1748-605x/ad3f60
摘要

Abstract Accurate segmentation of coronary artery tree and personalized 3D printing from medical images is essential for CAD diagnosis and treatment. The current literature on 3D printing relies solely on generic models created with different software or 3D coronary artery models manually segmented from medical images. Moreover, there are not many studies examining the bioprintability of a 3D model generated by artificial intelligence (AI) segmentation for complex and branched structures. In this study, deep learning algorithms with transfer learning have been employed for accurate segmentation of the coronary artery tree from medical images to generate printable segmentations. We propose a combination of deep learning and 3D printing, which accurately segments and prints complex vascular patterns in coronary arteries. Then, we performed the 3D printing of the AI-generated coronary artery segmentation for the fabrication of bifurcated hollow vascular structure. Our results indicate improved performance of segmentation with the aid of transfer learning with a Dice overlap score of 0.86 on a test set of 10 coronary tomography angiography images. Then, bifurcated regions from 3D models were printed into the Pluronic F-127 support bath using alginate + glucomannan hydrogel. We successfully fabricated the bifurcated coronary artery structures with high length and wall thickness accuracy, however, the outer diameters of the vessels and length of the bifurcation point differ from the 3D models. The extrusion of unnecessary material, primarily observed when the nozzle moves from left to the right vessel during 3D printing, can be mitigated by adjusting the nozzle speed. Moreover, the shape accuracy can also be improved by designing a multi-axis printhead that can change the printing angle in three dimensions. Thus, this study demonstrates the potential of the use of AI-segmented 3D models in the 3D printing of coronary artery structures and, when further improved, can be used for the fabrication of patient-specific vascular implants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Gtty完成签到,获得积分10
刚刚
深情安青应助竹林采纳,获得10
1秒前
丘比特应助dd123采纳,获得10
1秒前
无花果应助Vivian采纳,获得10
1秒前
1秒前
木今完成签到,获得积分10
1秒前
2秒前
baniu完成签到,获得积分10
2秒前
浅笑宝宝完成签到,获得积分10
2秒前
2秒前
自私向日葵应助bao采纳,获得15
2秒前
yue发布了新的文献求助10
2秒前
qhy完成签到,获得积分10
2秒前
2秒前
李爱国应助lml采纳,获得10
3秒前
yanyuqing完成签到,获得积分10
3秒前
3秒前
A水暖五金批发张哥完成签到,获得积分10
3秒前
烧烤发布了新的文献求助10
4秒前
5秒前
小冯完成签到,获得积分10
5秒前
可爱的函函应助LXiao采纳,获得10
5秒前
5秒前
木今发布了新的文献求助10
5秒前
饱满绮波发布了新的文献求助10
5秒前
Ava应助资紫丝采纳,获得10
6秒前
1234lyk完成签到,获得积分10
6秒前
齐桓公发布了新的文献求助20
7秒前
nas发布了新的文献求助10
7秒前
7秒前
甄人达完成签到,获得积分10
7秒前
AAA发布了新的文献求助10
7秒前
7秒前
phy完成签到,获得积分10
7秒前
8秒前
8秒前
小太阳发布了新的文献求助10
8秒前
mousehe完成签到,获得积分10
9秒前
9秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123270
求助须知:如何正确求助?哪些是违规求助? 2773756
关于积分的说明 7719288
捐赠科研通 2429428
什么是DOI,文献DOI怎么找? 1290306
科研通“疑难数据库(出版商)”最低求助积分说明 621803
版权声明 600251