亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Serum metabolomics improves risk stratification for incident heart failure

医学 代谢物 代谢组学 内科学 置信区间 心力衰竭 代谢组 比例危险模型 队列 心脏病学 生物信息学 生物
作者
Rafael R. Oexner,Hyunchan Ahn,Konstantinos Theofilatos,Ravi A. Shah,R Schmitt,Phil Chowienczyk,Anna Zoccarato,Ajay M. Shah
出处
期刊:European Journal of Heart Failure [Wiley]
卷期号:26 (4): 829-840 被引量:6
标识
DOI:10.1002/ejhf.3226
摘要

Abstract Aims Prediction and early detection of heart failure (HF) is crucial to mitigate its impact on quality of life, survival, and healthcare expenditure. Here, we explored the predictive value of serum metabolomics (168 metabolites detected by proton nuclear magnetic resonance [ 1 H‐NMR] spectroscopy) for incident HF. Methods and results Leveraging data of 68 311 individuals and >0.8 million person‐years of follow‐up from the UK Biobank cohort, we (i) fitted per‐metabolite Cox proportional hazards models to assess individual metabolite associations, and (ii) trained and validated elastic net models to predict incident HF using the serum metabolome. We benchmarked discriminative performance against a comprehensive, well‐validated clinical risk score (Pooled Cohort Equations to Prevent HF [PCP‐HF]). During a median follow‐up of ≈12.3 years, several metabolites showed independent association with incident HF (90/168 adjusting for age and sex, 48/168 adjusting for PCP‐HF). Performance‐optimized risk models effectively retained key predictors representing highly correlated clusters (≈80% feature reduction). Adding metabolomics to PCP‐HF improved predictive performance (Harrel's C: 0.768 vs. 0.755, ΔC = 0.013, [95% confidence interval [CI] 0.004–0.022], continuous net reclassification improvement [NRI]: 0.287 [95% CI 0.200–0.367], relative integrated discrimination improvement [IDI]: 17.47% [95% CI 9.463–27.825]). Models including age, sex and metabolomics performed almost as well as PCP‐HF (Harrel's C: 0.745 vs. 0.755, ΔC = 0.010 [95% CI −0.004 to 0.027], continuous NRI: 0.097 [95% CI −0.025 to 0.217], relative IDI: 13.445% [95% CI −10.608 to 41.454]). Risk and survival stratification was improved by integrating metabolomics. Conclusion Serum metabolomics improves incident HF risk prediction over PCP‐HF. Scores based on age, sex and metabolomics exhibit similar predictive power to clinically‐based models, potentially offering a cost‐effective, standardizable, and scalable single‐domain alternative.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zert发布了新的文献求助10
1秒前
bacteria完成签到,获得积分10
6秒前
在水一方应助11采纳,获得10
7秒前
七一藕完成签到,获得积分20
9秒前
小昏完成签到,获得积分10
10秒前
敬业乐群完成签到,获得积分10
11秒前
王者归来完成签到,获得积分10
14秒前
明理的蜗牛完成签到,获得积分10
18秒前
Alex驳回了思源应助
18秒前
21秒前
22秒前
25秒前
max完成签到,获得积分10
28秒前
阳6完成签到 ,获得积分10
33秒前
42秒前
壮观沉鱼完成签到 ,获得积分10
45秒前
47秒前
mjsdx完成签到 ,获得积分10
48秒前
守一完成签到,获得积分10
53秒前
1分钟前
FashionBoy应助啦啦啦就好采纳,获得10
1分钟前
南江悍匪发布了新的文献求助10
1分钟前
1分钟前
Panther完成签到,获得积分10
1分钟前
Alex发布了新的文献求助1000
1分钟前
harry发布了新的文献求助10
1分钟前
Kashing完成签到,获得积分0
1分钟前
南江悍匪完成签到,获得积分10
1分钟前
英俊的铭应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
苹果丹烟完成签到 ,获得积分10
1分钟前
安渝完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
巫马嫣然完成签到,获得积分10
1分钟前
kk_1315完成签到,获得积分10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Holistic Discourse Analysis 600
Constitutional and Administrative Law 600
Vertebrate Palaeontology, 5th Edition 530
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5345722
求助须知:如何正确求助?哪些是违规求助? 4480561
关于积分的说明 13946480
捐赠科研通 4378124
什么是DOI,文献DOI怎么找? 2405626
邀请新用户注册赠送积分活动 1398183
关于科研通互助平台的介绍 1370666