From Nash Q-learning to nash-MADDPG: Advancements in multiagent control for multiproduct flexible manufacturing systems

纳什均衡 控制(管理) 计算机科学 数理经济学 数学优化 经济 数学 人工智能
作者
Muhammad Waseem,Qing Chang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:74: 129-140 被引量:2
标识
DOI:10.1016/j.jmsy.2024.03.004
摘要

The emergence of flexible manufacturing systems (FMS) capable of processing multiple product types is a result of the growing demand for product customization and personalization. Such multiproduct systems are characterized by a higher level of uncertainty and variability when compared to traditional manufacturing systems. This paper proposes a Nash integrated multiagent deep deterministic policy gradient method (Nash-MADDPG) to control the mobile robots' assignment in a multiproduct FMS to enable intelligent decision-making, interaction, and dynamic learning capabilities. A mathematical model of a multiproduct FMS from a previous study is described, and system dynamic property is characterized by permanent production loss (PPL). Then, by observing PPL of the system and market demand for each product type, the multi-agent control scheme is developed to assign mobile robots to load/unload various product types at various machines. First, a Nash game is developed among the mobile robots and to improve the cooperation, a collaboration cost is defined. This collaboration cost is then used in the reward function of the multiagent deep deterministic policy gradient (MADDPG) algorithm. Second, the actions are jointly defined based on the action values of MADDPG, and the mobile robots' strategies in the Nash game, which update the environment to a new state. The performance of the proposed method is verified by comparing it with conventional Nash Q-learning, vanilla MADDPG, Q-learning based single agent reinforcement learning (SARL) and a first-come-first-serve (FCFS) based control. The results demonstrate that the multi-agent control scheme under the proposed Nash-MADDPG is effective in dealing with cooperative FMS environment that involves complicated dynamics and uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的易文完成签到 ,获得积分10
1秒前
丘山完成签到,获得积分10
1秒前
3秒前
英姑应助思维隋采纳,获得10
3秒前
羊村黑恶势力完成签到,获得积分10
4秒前
在水一方应助花花采纳,获得10
5秒前
Rondab应助Jamie2采纳,获得30
6秒前
慕青应助清沐颖涵采纳,获得10
8秒前
9秒前
沸羊羊发布了新的文献求助10
9秒前
9秒前
李y梅子完成签到,获得积分10
10秒前
Jasper应助icm采纳,获得30
10秒前
王提完成签到,获得积分10
11秒前
文艺向日葵完成签到,获得积分20
13秒前
13秒前
迷路安雁发布了新的文献求助10
13秒前
15秒前
passerby完成签到,获得积分10
15秒前
寒冷的匪发布了新的文献求助10
15秒前
huihui完成签到,获得积分10
18秒前
生姜完成签到 ,获得积分10
18秒前
xia发布了新的文献求助10
19秒前
花花发布了新的文献求助10
19秒前
19秒前
21秒前
霸气鹏飞发布了新的文献求助10
21秒前
沸羊羊完成签到,获得积分10
21秒前
沉沉完成签到 ,获得积分0
21秒前
姚裕完成签到,获得积分10
25秒前
25秒前
思维隋发布了新的文献求助10
26秒前
阿梅梅梅发布了新的文献求助30
26秒前
zyw0532完成签到,获得积分10
26秒前
天天快乐应助古月采纳,获得10
27秒前
27秒前
过时的元风完成签到,获得积分10
29秒前
syy完成签到,获得积分10
30秒前
小蘑菇应助Xin采纳,获得10
31秒前
31秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993519
求助须知:如何正确求助?哪些是违规求助? 3534225
关于积分的说明 11265055
捐赠科研通 3274061
什么是DOI,文献DOI怎么找? 1806274
邀请新用户注册赠送积分活动 883084
科研通“疑难数据库(出版商)”最低求助积分说明 809710