From Nash Q-learning to nash-MADDPG: Advancements in multiagent control for multiproduct flexible manufacturing systems

纳什均衡 控制(管理) 计算机科学 数理经济学 数学优化 经济 数学 人工智能
作者
Muhammad Waseem,Qing Chang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:74: 129-140 被引量:2
标识
DOI:10.1016/j.jmsy.2024.03.004
摘要

The emergence of flexible manufacturing systems (FMS) capable of processing multiple product types is a result of the growing demand for product customization and personalization. Such multiproduct systems are characterized by a higher level of uncertainty and variability when compared to traditional manufacturing systems. This paper proposes a Nash integrated multiagent deep deterministic policy gradient method (Nash-MADDPG) to control the mobile robots' assignment in a multiproduct FMS to enable intelligent decision-making, interaction, and dynamic learning capabilities. A mathematical model of a multiproduct FMS from a previous study is described, and system dynamic property is characterized by permanent production loss (PPL). Then, by observing PPL of the system and market demand for each product type, the multi-agent control scheme is developed to assign mobile robots to load/unload various product types at various machines. First, a Nash game is developed among the mobile robots and to improve the cooperation, a collaboration cost is defined. This collaboration cost is then used in the reward function of the multiagent deep deterministic policy gradient (MADDPG) algorithm. Second, the actions are jointly defined based on the action values of MADDPG, and the mobile robots' strategies in the Nash game, which update the environment to a new state. The performance of the proposed method is verified by comparing it with conventional Nash Q-learning, vanilla MADDPG, Q-learning based single agent reinforcement learning (SARL) and a first-come-first-serve (FCFS) based control. The results demonstrate that the multi-agent control scheme under the proposed Nash-MADDPG is effective in dealing with cooperative FMS environment that involves complicated dynamics and uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mosisa完成签到,获得积分10
刚刚
和谐皮卡丘完成签到,获得积分20
刚刚
等待的剑身完成签到,获得积分10
刚刚
1秒前
1秒前
科研通AI6应助早川木槿采纳,获得10
1秒前
故里完成签到,获得积分10
1秒前
黑白芋头完成签到,获得积分10
1秒前
二尖瓣后叶完成签到,获得积分10
1秒前
弘一完成签到,获得积分10
1秒前
一米阳光发布了新的文献求助10
1秒前
签儿儿儿完成签到 ,获得积分10
1秒前
最好是完成签到,获得积分10
2秒前
2秒前
2秒前
汉桑波欸完成签到,获得积分10
2秒前
粗暴的达发布了新的文献求助10
3秒前
热心的薯片完成签到,获得积分10
3秒前
大好人完成签到 ,获得积分10
3秒前
犹豫酸奶发布了新的文献求助10
4秒前
4秒前
张一凡发布了新的文献求助10
4秒前
聪明新筠完成签到,获得积分10
4秒前
wjw完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
汉堡包应助wuyoung采纳,获得10
5秒前
牛牛完成签到,获得积分10
5秒前
黑白芋头发布了新的文献求助10
5秒前
哇塞爹完成签到,获得积分10
5秒前
老实盼海发布了新的文献求助10
5秒前
冷酷含羞草完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
魔幻傲霜完成签到,获得积分10
5秒前
YSZ完成签到,获得积分10
6秒前
xc完成签到,获得积分10
6秒前
6秒前
小西瓜发布了新的文献求助10
6秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573926
求助须知:如何正确求助?哪些是违规求助? 4660203
关于积分的说明 14728382
捐赠科研通 4599980
什么是DOI,文献DOI怎么找? 2524638
邀请新用户注册赠送积分活动 1494989
关于科研通互助平台的介绍 1465005