From Nash Q-learning to nash-MADDPG: Advancements in multiagent control for multiproduct flexible manufacturing systems

纳什均衡 控制(管理) 计算机科学 数理经济学 数学优化 经济 数学 人工智能
作者
Muhammad Waseem,Qing Chang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:74: 129-140 被引量:2
标识
DOI:10.1016/j.jmsy.2024.03.004
摘要

The emergence of flexible manufacturing systems (FMS) capable of processing multiple product types is a result of the growing demand for product customization and personalization. Such multiproduct systems are characterized by a higher level of uncertainty and variability when compared to traditional manufacturing systems. This paper proposes a Nash integrated multiagent deep deterministic policy gradient method (Nash-MADDPG) to control the mobile robots' assignment in a multiproduct FMS to enable intelligent decision-making, interaction, and dynamic learning capabilities. A mathematical model of a multiproduct FMS from a previous study is described, and system dynamic property is characterized by permanent production loss (PPL). Then, by observing PPL of the system and market demand for each product type, the multi-agent control scheme is developed to assign mobile robots to load/unload various product types at various machines. First, a Nash game is developed among the mobile robots and to improve the cooperation, a collaboration cost is defined. This collaboration cost is then used in the reward function of the multiagent deep deterministic policy gradient (MADDPG) algorithm. Second, the actions are jointly defined based on the action values of MADDPG, and the mobile robots' strategies in the Nash game, which update the environment to a new state. The performance of the proposed method is verified by comparing it with conventional Nash Q-learning, vanilla MADDPG, Q-learning based single agent reinforcement learning (SARL) and a first-come-first-serve (FCFS) based control. The results demonstrate that the multi-agent control scheme under the proposed Nash-MADDPG is effective in dealing with cooperative FMS environment that involves complicated dynamics and uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
专注的问寒应助刘厚麟采纳,获得20
1秒前
1秒前
Jue发布了新的文献求助10
1秒前
斯文败类应助专注的问筠采纳,获得10
1秒前
1秒前
Ann完成签到,获得积分10
2秒前
bafanbqg完成签到,获得积分10
2秒前
2秒前
3秒前
Lingtem完成签到,获得积分20
3秒前
复杂豁发布了新的文献求助10
3秒前
思源应助完美世界采纳,获得10
3秒前
大模型应助xqc采纳,获得10
3秒前
沙漠猫发布了新的文献求助10
3秒前
Stella应助鲜艳的芹采纳,获得30
3秒前
FashionBoy应助zyz采纳,获得30
4秒前
4秒前
jz完成签到,获得积分10
4秒前
Wille完成签到,获得积分10
5秒前
泡沫没有冰完成签到 ,获得积分10
5秒前
5秒前
姜书南发布了新的文献求助10
5秒前
6秒前
传奇3应助Harssi采纳,获得10
6秒前
流萤完成签到,获得积分10
6秒前
wang发布了新的文献求助10
6秒前
东东完成签到,获得积分10
6秒前
rain完成签到,获得积分10
7秒前
梓言关注了科研通微信公众号
7秒前
8秒前
张小小发布了新的文献求助10
8秒前
jane122完成签到 ,获得积分10
8秒前
情怀应助123456采纳,获得10
8秒前
斯文败类应助Jue采纳,获得10
9秒前
9秒前
大模型应助Magical采纳,获得10
9秒前
9秒前
9秒前
10秒前
sghsh完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836