已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

From Nash Q-learning to nash-MADDPG: Advancements in multiagent control for multiproduct flexible manufacturing systems

纳什均衡 控制(管理) 计算机科学 数理经济学 数学优化 经济 数学 人工智能
作者
Muhammad Waseem,Qing Chang
出处
期刊:Journal of Manufacturing Systems [Elsevier BV]
卷期号:74: 129-140 被引量:2
标识
DOI:10.1016/j.jmsy.2024.03.004
摘要

The emergence of flexible manufacturing systems (FMS) capable of processing multiple product types is a result of the growing demand for product customization and personalization. Such multiproduct systems are characterized by a higher level of uncertainty and variability when compared to traditional manufacturing systems. This paper proposes a Nash integrated multiagent deep deterministic policy gradient method (Nash-MADDPG) to control the mobile robots' assignment in a multiproduct FMS to enable intelligent decision-making, interaction, and dynamic learning capabilities. A mathematical model of a multiproduct FMS from a previous study is described, and system dynamic property is characterized by permanent production loss (PPL). Then, by observing PPL of the system and market demand for each product type, the multi-agent control scheme is developed to assign mobile robots to load/unload various product types at various machines. First, a Nash game is developed among the mobile robots and to improve the cooperation, a collaboration cost is defined. This collaboration cost is then used in the reward function of the multiagent deep deterministic policy gradient (MADDPG) algorithm. Second, the actions are jointly defined based on the action values of MADDPG, and the mobile robots' strategies in the Nash game, which update the environment to a new state. The performance of the proposed method is verified by comparing it with conventional Nash Q-learning, vanilla MADDPG, Q-learning based single agent reinforcement learning (SARL) and a first-come-first-serve (FCFS) based control. The results demonstrate that the multi-agent control scheme under the proposed Nash-MADDPG is effective in dealing with cooperative FMS environment that involves complicated dynamics and uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待映阳完成签到 ,获得积分10
1秒前
早早发布了新的文献求助10
2秒前
3秒前
3秒前
VDC应助Yeyeye采纳,获得30
5秒前
彭于晏应助朱冰蓝采纳,获得10
5秒前
5秒前
酷波er应助ahaa采纳,获得10
7秒前
za发布了新的文献求助10
8秒前
XMC2022发布了新的文献求助10
8秒前
11秒前
充电宝应助罗大壮采纳,获得10
11秒前
WWW完成签到 ,获得积分10
11秒前
多喝温水完成签到 ,获得积分10
11秒前
12秒前
wise111发布了新的文献求助10
12秒前
13秒前
李爱国应助za采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得30
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
传奇3应助科研通管家采纳,获得10
14秒前
小二郎应助科研通管家采纳,获得10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
正直乘云发布了新的文献求助10
15秒前
XMC2022完成签到,获得积分10
16秒前
16秒前
aloha01发布了新的文献求助10
16秒前
suy发布了新的文献求助10
17秒前
18秒前
20秒前
二二春完成签到,获得积分10
20秒前
万默完成签到 ,获得积分10
20秒前
Dr.Wei完成签到,获得积分10
22秒前
罗大壮发布了新的文献求助10
23秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Huang's Catheter Ablation of Cardiac Arrhythmias 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125917
求助须知:如何正确求助?哪些是违规求助? 4329582
关于积分的说明 13491436
捐赠科研通 4164515
什么是DOI,文献DOI怎么找? 2282992
邀请新用户注册赠送积分活动 1284044
关于科研通互助平台的介绍 1223448