From Nash Q-learning to nash-MADDPG: Advancements in multiagent control for multiproduct flexible manufacturing systems

纳什均衡 控制(管理) 计算机科学 数理经济学 数学优化 经济 数学 人工智能
作者
Muhammad Waseem,Qing Chang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:74: 129-140 被引量:1
标识
DOI:10.1016/j.jmsy.2024.03.004
摘要

The emergence of flexible manufacturing systems (FMS) capable of processing multiple product types is a result of the growing demand for product customization and personalization. Such multiproduct systems are characterized by a higher level of uncertainty and variability when compared to traditional manufacturing systems. This paper proposes a Nash integrated multiagent deep deterministic policy gradient method (Nash-MADDPG) to control the mobile robots' assignment in a multiproduct FMS to enable intelligent decision-making, interaction, and dynamic learning capabilities. A mathematical model of a multiproduct FMS from a previous study is described, and system dynamic property is characterized by permanent production loss (PPL). Then, by observing PPL of the system and market demand for each product type, the multi-agent control scheme is developed to assign mobile robots to load/unload various product types at various machines. First, a Nash game is developed among the mobile robots and to improve the cooperation, a collaboration cost is defined. This collaboration cost is then used in the reward function of the multiagent deep deterministic policy gradient (MADDPG) algorithm. Second, the actions are jointly defined based on the action values of MADDPG, and the mobile robots' strategies in the Nash game, which update the environment to a new state. The performance of the proposed method is verified by comparing it with conventional Nash Q-learning, vanilla MADDPG, Q-learning based single agent reinforcement learning (SARL) and a first-come-first-serve (FCFS) based control. The results demonstrate that the multi-agent control scheme under the proposed Nash-MADDPG is effective in dealing with cooperative FMS environment that involves complicated dynamics and uncertainties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
洛北发布了新的文献求助10
1秒前
科研通AI2S应助Carrie Qin采纳,获得10
1秒前
JamesPei应助oh采纳,获得10
2秒前
兴龙完成签到,获得积分20
2秒前
3秒前
不配.应助枝桠采纳,获得10
4秒前
大会开始看完成签到,获得积分10
4秒前
炒米粉完成签到,获得积分10
5秒前
兴龙发布了新的文献求助30
5秒前
5秒前
6秒前
6秒前
sanmu发布了新的文献求助388
7秒前
7秒前
墙墙发布了新的文献求助10
7秒前
星辰大海应助秋秋采纳,获得10
8秒前
充电宝应助Clouder采纳,获得10
8秒前
Lucas完成签到,获得积分10
9秒前
AptRank发布了新的文献求助10
9秒前
小赞芽发布了新的文献求助10
11秒前
果粒红豆豆完成签到 ,获得积分10
11秒前
ogotho完成签到,获得积分10
11秒前
nsy完成签到,获得积分10
13秒前
14秒前
欧阳曼云完成签到,获得积分10
14秒前
14秒前
传奇3应助热心橘子采纳,获得10
16秒前
16秒前
搜集达人应助结实曼凡采纳,获得10
17秒前
思源应助结实曼凡采纳,获得10
17秒前
MZG完成签到,获得积分10
18秒前
秋秋完成签到,获得积分10
18秒前
AptRank完成签到,获得积分10
19秒前
科目三应助乐观的访风采纳,获得10
20秒前
21秒前
慕涔发布了新的文献求助10
21秒前
Orange应助结实龙猫采纳,获得10
22秒前
程程完成签到,获得积分10
22秒前
秋秋发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135127
求助须知:如何正确求助?哪些是违规求助? 2786103
关于积分的说明 7775305
捐赠科研通 2441924
什么是DOI,文献DOI怎么找? 1298299
科研通“疑难数据库(出版商)”最低求助积分说明 625112
版权声明 600839