From Nash Q-learning to nash-MADDPG: Advancements in multiagent control for multiproduct flexible manufacturing systems

纳什均衡 控制(管理) 计算机科学 数理经济学 数学优化 经济 数学 人工智能
作者
Muhammad Waseem,Qing Chang
出处
期刊:Journal of Manufacturing Systems [Elsevier]
卷期号:74: 129-140 被引量:2
标识
DOI:10.1016/j.jmsy.2024.03.004
摘要

The emergence of flexible manufacturing systems (FMS) capable of processing multiple product types is a result of the growing demand for product customization and personalization. Such multiproduct systems are characterized by a higher level of uncertainty and variability when compared to traditional manufacturing systems. This paper proposes a Nash integrated multiagent deep deterministic policy gradient method (Nash-MADDPG) to control the mobile robots' assignment in a multiproduct FMS to enable intelligent decision-making, interaction, and dynamic learning capabilities. A mathematical model of a multiproduct FMS from a previous study is described, and system dynamic property is characterized by permanent production loss (PPL). Then, by observing PPL of the system and market demand for each product type, the multi-agent control scheme is developed to assign mobile robots to load/unload various product types at various machines. First, a Nash game is developed among the mobile robots and to improve the cooperation, a collaboration cost is defined. This collaboration cost is then used in the reward function of the multiagent deep deterministic policy gradient (MADDPG) algorithm. Second, the actions are jointly defined based on the action values of MADDPG, and the mobile robots' strategies in the Nash game, which update the environment to a new state. The performance of the proposed method is verified by comparing it with conventional Nash Q-learning, vanilla MADDPG, Q-learning based single agent reinforcement learning (SARL) and a first-come-first-serve (FCFS) based control. The results demonstrate that the multi-agent control scheme under the proposed Nash-MADDPG is effective in dealing with cooperative FMS environment that involves complicated dynamics and uncertainties.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
znn发布了新的文献求助10
刚刚
郭mm应助文件撤销了驳回
刚刚
量子星尘发布了新的文献求助10
1秒前
球球尧伞耳完成签到,获得积分10
1秒前
七月流火应助XUXIAOLI采纳,获得50
1秒前
饼干脆完成签到,获得积分10
1秒前
1秒前
xiaoyue发布了新的文献求助10
2秒前
小雪完成签到,获得积分10
2秒前
tt发布了新的文献求助10
2秒前
光亮天蓉发布了新的文献求助10
2秒前
mm应助Truman采纳,获得10
3秒前
充电宝应助daqing采纳,获得10
3秒前
绕地球3圈发布了新的文献求助10
3秒前
3秒前
李宁发布了新的文献求助10
3秒前
九笙完成签到,获得积分10
3秒前
vpn发布了新的文献求助30
3秒前
3秒前
Xxx完成签到,获得积分10
3秒前
斯文败类应助吱吱采纳,获得10
4秒前
鲤跃发布了新的文献求助10
4秒前
852应助骆驼采纳,获得10
4秒前
Jasper应助申申采纳,获得10
5秒前
旺旺仙贝完成签到 ,获得积分10
5秒前
情怀应助YL采纳,获得10
5秒前
不能吃了发布了新的文献求助10
5秒前
5秒前
5秒前
6秒前
6秒前
mal龙完成签到,获得积分10
7秒前
草莓司康发布了新的文献求助30
7秒前
俭朴的玉兰完成签到,获得积分10
7秒前
hunter完成签到,获得积分10
7秒前
宫小小心完成签到,获得积分10
7秒前
共享精神应助鱼鱼采纳,获得10
8秒前
8秒前
8秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5614771
求助须知:如何正确求助?哪些是违规求助? 4699728
关于积分的说明 14904799
捐赠科研通 4740353
什么是DOI,文献DOI怎么找? 2547768
邀请新用户注册赠送积分活动 1511577
关于科研通互助平台的介绍 1473687