已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

How review content, sentiment and helpfulness votes jointly affect trust of reviews and attitude

有用性 声誉 产品(数学) 社会化媒体 投票 微博 情感(语言学) 独创性 服务(商务) 用户生成的内容 情绪分析 心理学 计算机科学 互联网隐私 广告 营销 社会心理学 万维网 业务 政治学 数学 沟通 几何学 机器学习 政治 创造力 法学
作者
Jing Li,Xu Xin,Eric W.T. Ngai
出处
期刊:Internet Research [Emerald (MCB UP)]
卷期号:34 (6): 2232-2256 被引量:2
标识
DOI:10.1108/intr-01-2023-0025
摘要

Purpose We investigate the joint impacts of three trust cues – content, sentiment and helpfulness votes – of online product reviews on the trust of reviews and attitude toward the product/service reviewed. Design/methodology/approach We performed three studies to test our research model, presenting participants with scenarios involving product reviews and prior users' helpful and unhelpful votes across experimental settings. Findings A high helpfulness ratio boosts users’ trust and influences behaviors in both positive and negative reviews. This effect is more pronounced in attribute-based reviews than emotion-based ones. Unlike the ratio effect, helpfulness magnitude significantly impacts only negative attribute-based reviews. Research limitations/implications Future research should investigate voting systems in various online contexts, such as Facebook post likes, Twitter microblog thumb-ups and up-votes for article comments on platforms like The New York Times. Practical implications Our findings have significant implications for voting system-providers implementing information techniques on third-party review platforms, participatory sites emphasizing user-generated content and online retailers prioritizing product awareness and reputation. Originality/value This study addresses an identified need; that is, the helpfulness votes as an additional trust cue and the joint effects of three trust cues – content, sentiment and helpfulness votes – of online product reviews on the trust of customers in reviews and their consequential attitude toward the product/service reviewed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
3秒前
wanci应助玩命的凝天采纳,获得10
4秒前
ding应助钟sir采纳,获得10
4秒前
s654231发布了新的文献求助10
4秒前
忽记起发布了新的文献求助10
5秒前
6秒前
雨雨爱薯条完成签到 ,获得积分10
8秒前
8秒前
8秒前
stephen_wang发布了新的文献求助10
10秒前
蓝田完成签到,获得积分10
10秒前
完美世界应助畅快问蕊采纳,获得10
11秒前
12秒前
ytg922发布了新的文献求助10
12秒前
未溪发布了新的文献求助10
13秒前
嗯啊啊啊啊完成签到,获得积分10
13秒前
15秒前
17秒前
17秒前
18秒前
18秒前
19秒前
hy完成签到,获得积分10
19秒前
缓慢如南应助虚幻的水之采纳,获得10
20秒前
祁瓀完成签到,获得积分10
21秒前
虚心鹏飞发布了新的文献求助10
23秒前
万能图书馆应助swordlee采纳,获得30
24秒前
欣慰小丸子应助雨肖采纳,获得10
24秒前
CDQ发布了新的文献求助30
25秒前
科研通AI5应助未溪采纳,获得10
27秒前
陈年人少熬夜完成签到 ,获得积分10
28秒前
诚心的初露完成签到,获得积分10
28秒前
s654231完成签到,获得积分10
30秒前
科研通AI5应助吃了吃了采纳,获得10
30秒前
30秒前
31秒前
31秒前
正直的叫兽完成签到,获得积分10
32秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555447
求助须知:如何正确求助?哪些是违规求助? 3131097
关于积分的说明 9390003
捐赠科研通 2830593
什么是DOI,文献DOI怎么找? 1556091
邀请新用户注册赠送积分活动 726459
科研通“疑难数据库(出版商)”最低求助积分说明 715756