Deep learning for automatic prediction of early activation of treatment naïve non-exudative MNVs in AMD

医学 光学相干层析成像 光学相干断层摄影术 荧光血管造影 眼科 人工智能 计算机科学 视力
作者
Emanuele Crincoli,Fiammetta Catania,Riccardo Sacconi,Nicolò Ribarich,Silvia Ferrara,Mariacristina Parravano,Eliana Costanzo,Giuseppe Querques
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases [Lippincott Williams & Wilkins]
标识
DOI:10.1097/iae.0000000000004106
摘要

Around 30% of non-exudative macular neovascularizations(NE-MNVs) exudate within 2 years from diagnosis in patients with age-related macular degeneration(AMD).The aim of the study is to develop a deep learning classifier based on optical coherence tomography(OCT) and OCT angiography(OCTA) to identify NE-MNVs at risk of exudation.AMD patients showing OCTA and fluorescein angiography (FA) documented NE-MNV with a 2-years minimum imaging follow-up were retrospectively selected. Patients showing OCT B-scan-documented MNV exudation within the first 2 years formed the EX-GROUP while the others formed QU-GROUP.ResNet-101, Inception-ResNet-v2 and DenseNet-201 were independently trained on OCTA and OCT B-scan images. Combinations of the 6 models were evaluated with major and soft voting techniques.Eighty-nine (89) eyes of 89 patients with a follow-up of 5.7 ± 1.5 years were recruited(35 EX GROUP and 54 QU GROUP). Inception-ResNet-v2 was the best performing among the 3 single convolutional neural networks(CNNs).The major voting model resulting from the association of the 3 different CNNs resulted in improvement of performance both for OCTA and OCT B-scan (both significantly higher than human graders' performance). Soft voting model resulting from the combination of OCTA and OCT B-scan based major voting models showed a testing accuracy of 94.4%. Peripheral arcades and large vessels on OCTA enface imaging were more prevalent in QU GROUP.Artificial intelligence shows high performances in identifications of NE-MNVs at risk for exudation within the first 2 years of follow up, allowing better customization of follow up timing and avoiding treatment delay. Better results are obtained with the combination of OCTA and OCT B-scan image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Banff完成签到,获得积分10
刚刚
zyyz616完成签到,获得积分10
3秒前
桐桐应助mizhou采纳,获得10
5秒前
liu完成签到,获得积分10
5秒前
8R60d8应助青柠采纳,获得10
5秒前
默默发布了新的文献求助10
6秒前
鸽子的迷信完成签到,获得积分10
9秒前
小贩发布了新的文献求助10
9秒前
是真的完成签到 ,获得积分10
11秒前
taotao完成签到,获得积分10
12秒前
灵巧的翠风完成签到,获得积分10
15秒前
15秒前
16秒前
huangsi发布了新的文献求助10
16秒前
美满的咖啡豆完成签到,获得积分10
17秒前
宋艳芳完成签到,获得积分10
18秒前
wmmm完成签到,获得积分10
19秒前
WQ发布了新的文献求助10
19秒前
小贩完成签到,获得积分10
21秒前
李雷完成签到 ,获得积分10
21秒前
22秒前
我爱学习完成签到,获得积分10
22秒前
爆米花应助Avalon采纳,获得10
23秒前
CodeCraft应助wanwan采纳,获得10
23秒前
尧九完成签到,获得积分10
25秒前
小余同学完成签到,获得积分10
28秒前
默默发布了新的文献求助10
29秒前
隐形曼青应助樊书南采纳,获得10
29秒前
30秒前
浮浮世世发布了新的文献求助10
33秒前
34秒前
圈儿完成签到,获得积分10
36秒前
浮浮世世完成签到,获得积分10
37秒前
纪亦竹发布了新的文献求助10
37秒前
凡凡没烦恼完成签到,获得积分20
37秒前
39秒前
henny完成签到 ,获得积分10
39秒前
41秒前
樱花出行中完成签到,获得积分20
44秒前
44秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3991903
求助须知:如何正确求助?哪些是违规求助? 3533023
关于积分的说明 11260405
捐赠科研通 3272329
什么是DOI,文献DOI怎么找? 1805693
邀请新用户注册赠送积分活动 882626
科研通“疑难数据库(出版商)”最低求助积分说明 809425