Deep learning for automatic prediction of early activation of treatment naïve non-exudative MNVs in AMD

医学 光学相干层析成像 光学相干断层摄影术 荧光血管造影 眼科 人工智能 计算机科学 视力
作者
Emanuele Crincoli,Fiammetta Catania,Riccardo Sacconi,Nicolò Ribarich,Silvia Ferrara,Mariacristina Parravano,Eliana Costanzo,Giuseppe Querques
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases [Ovid Technologies (Wolters Kluwer)]
被引量:2
标识
DOI:10.1097/iae.0000000000004106
摘要

Background: Around 30% of non-exudative macular neovascularizations(NE-MNVs) exudate within 2 years from diagnosis in patients with age-related macular degeneration(AMD).The aim of the study is to develop a deep learning classifier based on optical coherence tomography(OCT) and OCT angiography(OCTA) to identify NE-MNVs at risk of exudation. Methods: AMD patients showing OCTA and fluorescein angiography (FA) documented NE-MNV with a 2-years minimum imaging follow-up were retrospectively selected. Patients showing OCT B-scan-documented MNV exudation within the first 2 years formed the EX-GROUP while the others formed QU-GROUP.ResNet-101, Inception-ResNet-v2 and DenseNet-201 were independently trained on OCTA and OCT B-scan images. Combinations of the 6 models were evaluated with major and soft voting techniques. Results: Eighty-nine (89) eyes of 89 patients with a follow-up of 5.7 ± 1.5 years were recruited(35 EX GROUP and 54 QU GROUP). Inception-ResNet-v2 was the best performing among the 3 single convolutional neural networks(CNNs).The major voting model resulting from the association of the 3 different CNNs resulted in improvement of performance both for OCTA and OCT B-scan (both significantly higher than human graders’ performance). Soft voting model resulting from the combination of OCTA and OCT B-scan based major voting models showed a testing accuracy of 94.4%. Peripheral arcades and large vessels on OCTA enface imaging were more prevalent in QU GROUP. Conclusions: Artificial intelligence shows high performances in identifications of NE-MNVs at risk for exudation within the first 2 years of follow up, allowing better customization of follow up timing and avoiding treatment delay. Better results are obtained with the combination of OCTA and OCT B-scan image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
诺言完成签到,获得积分10
刚刚
2秒前
GPTea应助zdd采纳,获得20
3秒前
诺言发布了新的文献求助10
3秒前
赘婿应助大请第一比巴比采纳,获得10
4秒前
r6ud65发布了新的文献求助10
4秒前
lvjiahui发布了新的文献求助10
4秒前
丘比特应助zjy采纳,获得10
4秒前
Spteer完成签到,获得积分10
5秒前
ZRT134发布了新的文献求助10
5秒前
Lucas应助信仰采纳,获得10
6秒前
汪汪发布了新的文献求助10
7秒前
快乐土豆完成签到 ,获得积分10
7秒前
9秒前
10秒前
10秒前
桑尼号完成签到,获得积分10
10秒前
11秒前
LuLan0401完成签到,获得积分10
11秒前
12秒前
Lucas应助冰可乐真的好喝采纳,获得10
12秒前
12秒前
13秒前
徐佳达发布了新的文献求助10
13秒前
汪汪完成签到,获得积分20
13秒前
13秒前
远山等故归完成签到,获得积分20
13秒前
15秒前
15秒前
元夕发布了新的文献求助10
16秒前
小小波发布了新的文献求助10
16秒前
李爱国应助要毕业的小刘采纳,获得10
16秒前
坚强的笑天完成签到,获得积分10
17秒前
17秒前
18秒前
18秒前
icecream007发布了新的文献求助10
18秒前
科研通AI6应助eriphin采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5360951
求助须知:如何正确求助?哪些是违规求助? 4491367
关于积分的说明 13982317
捐赠科研通 4394105
什么是DOI,文献DOI怎么找? 2413767
邀请新用户注册赠送积分活动 1406580
关于科研通互助平台的介绍 1381139