Deep learning for automatic prediction of early activation of treatment naïve non-exudative MNVs in AMD

医学 光学相干层析成像 光学相干断层摄影术 荧光血管造影 眼科 人工智能 计算机科学 视力
作者
Emanuele Crincoli,Fiammetta Catania,Riccardo Sacconi,Nicolò Ribarich,Silvia Ferrara,Mariacristina Parravano,Eliana Costanzo,Giuseppe Querques
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/iae.0000000000004106
摘要

Around 30% of non-exudative macular neovascularizations(NE-MNVs) exudate within 2 years from diagnosis in patients with age-related macular degeneration(AMD).The aim of the study is to develop a deep learning classifier based on optical coherence tomography(OCT) and OCT angiography(OCTA) to identify NE-MNVs at risk of exudation.AMD patients showing OCTA and fluorescein angiography (FA) documented NE-MNV with a 2-years minimum imaging follow-up were retrospectively selected. Patients showing OCT B-scan-documented MNV exudation within the first 2 years formed the EX-GROUP while the others formed QU-GROUP.ResNet-101, Inception-ResNet-v2 and DenseNet-201 were independently trained on OCTA and OCT B-scan images. Combinations of the 6 models were evaluated with major and soft voting techniques.Eighty-nine (89) eyes of 89 patients with a follow-up of 5.7 ± 1.5 years were recruited(35 EX GROUP and 54 QU GROUP). Inception-ResNet-v2 was the best performing among the 3 single convolutional neural networks(CNNs).The major voting model resulting from the association of the 3 different CNNs resulted in improvement of performance both for OCTA and OCT B-scan (both significantly higher than human graders' performance). Soft voting model resulting from the combination of OCTA and OCT B-scan based major voting models showed a testing accuracy of 94.4%. Peripheral arcades and large vessels on OCTA enface imaging were more prevalent in QU GROUP.Artificial intelligence shows high performances in identifications of NE-MNVs at risk for exudation within the first 2 years of follow up, allowing better customization of follow up timing and avoiding treatment delay. Better results are obtained with the combination of OCTA and OCT B-scan image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
飞飞发布了新的文献求助10
2秒前
可靠的大美完成签到,获得积分10
2秒前
我是老大应助月牙超级甜采纳,获得10
6秒前
6秒前
淡定的翠霜关注了科研通微信公众号
6秒前
舒心的青槐完成签到 ,获得积分10
7秒前
火星上以亦完成签到,获得积分10
8秒前
9秒前
背后的问寒完成签到,获得积分10
10秒前
Soul完成签到 ,获得积分20
10秒前
Akim应助小二郎采纳,获得10
13秒前
15秒前
16秒前
科研通AI2S应助littleblack采纳,获得10
17秒前
17秒前
19秒前
简单水杯完成签到 ,获得积分10
19秒前
lllyu完成签到,获得积分10
21秒前
22秒前
111完成签到,获得积分10
22秒前
漂亮糖豆发布了新的文献求助10
22秒前
星辰完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
Orange应助tsttst采纳,获得10
26秒前
飞飞完成签到,获得积分10
26秒前
樊书南发布了新的文献求助10
27秒前
XXX完成签到,获得积分10
27秒前
27秒前
爱听歌的青筠完成签到,获得积分10
28秒前
小熊猫发布了新的文献求助10
29秒前
Singularity应助光芒万丈采纳,获得20
29秒前
luobo发布了新的文献求助10
30秒前
FUNG发布了新的文献求助10
30秒前
小二郎发布了新的文献求助10
31秒前
33秒前
34秒前
luobo完成签到,获得积分10
34秒前
科研通AI2S应助hhdh采纳,获得10
37秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084836
求助须知:如何正确求助?哪些是违规求助? 2737894
关于积分的说明 7547256
捐赠科研通 2387494
什么是DOI,文献DOI怎么找? 1265999
科研通“疑难数据库(出版商)”最低求助积分说明 613212
版权声明 598429