Deep learning for automatic prediction of early activation of treatment naïve non-exudative MNVs in AMD

医学 光学相干层析成像 光学相干断层摄影术 荧光血管造影 眼科 人工智能 计算机科学 视力
作者
Emanuele Crincoli,Fiammetta Catania,Riccardo Sacconi,Nicolò Ribarich,Silvia Ferrara,Mariacristina Parravano,Eliana Costanzo,Giuseppe Querques
出处
期刊:Retina-the Journal of Retinal and Vitreous Diseases [Lippincott Williams & Wilkins]
被引量:2
标识
DOI:10.1097/iae.0000000000004106
摘要

Background: Around 30% of non-exudative macular neovascularizations(NE-MNVs) exudate within 2 years from diagnosis in patients with age-related macular degeneration(AMD).The aim of the study is to develop a deep learning classifier based on optical coherence tomography(OCT) and OCT angiography(OCTA) to identify NE-MNVs at risk of exudation. Methods: AMD patients showing OCTA and fluorescein angiography (FA) documented NE-MNV with a 2-years minimum imaging follow-up were retrospectively selected. Patients showing OCT B-scan-documented MNV exudation within the first 2 years formed the EX-GROUP while the others formed QU-GROUP.ResNet-101, Inception-ResNet-v2 and DenseNet-201 were independently trained on OCTA and OCT B-scan images. Combinations of the 6 models were evaluated with major and soft voting techniques. Results: Eighty-nine (89) eyes of 89 patients with a follow-up of 5.7 ± 1.5 years were recruited(35 EX GROUP and 54 QU GROUP). Inception-ResNet-v2 was the best performing among the 3 single convolutional neural networks(CNNs).The major voting model resulting from the association of the 3 different CNNs resulted in improvement of performance both for OCTA and OCT B-scan (both significantly higher than human graders’ performance). Soft voting model resulting from the combination of OCTA and OCT B-scan based major voting models showed a testing accuracy of 94.4%. Peripheral arcades and large vessels on OCTA enface imaging were more prevalent in QU GROUP. Conclusions: Artificial intelligence shows high performances in identifications of NE-MNVs at risk for exudation within the first 2 years of follow up, allowing better customization of follow up timing and avoiding treatment delay. Better results are obtained with the combination of OCTA and OCT B-scan image analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
调皮的海之完成签到,获得积分10
1秒前
浮游应助谷粱紫槐采纳,获得10
1秒前
异乡人完成签到,获得积分10
1秒前
Boffican发布了新的文献求助10
2秒前
zhonglv7应助勤奋谷梦采纳,获得10
2秒前
悦耳的三毒完成签到,获得积分10
2秒前
科研通AI6应助虾仁炒饭采纳,获得10
3秒前
科研小白发布了新的文献求助10
3秒前
漂亮半兰完成签到,获得积分10
3秒前
4秒前
刻苦惜萍发布了新的文献求助10
5秒前
奋斗灵珊完成签到,获得积分10
5秒前
呆萌的凡完成签到,获得积分10
5秒前
在吃饭的时候吃饭完成签到,获得积分10
5秒前
6秒前
6秒前
漂亮半兰发布了新的文献求助20
6秒前
7秒前
7秒前
7秒前
8秒前
慕青应助风清扬采纳,获得10
8秒前
8秒前
cc完成签到,获得积分10
9秒前
9秒前
852应助lql采纳,获得10
9秒前
9秒前
9秒前
10秒前
sss完成签到,获得积分10
10秒前
呆萌的悲发布了新的文献求助10
11秒前
wangjie发布了新的文献求助10
11秒前
Lengbo发布了新的文献求助10
11秒前
文静的巨人完成签到,获得积分20
11秒前
12秒前
anhui完成签到,获得积分10
12秒前
李爱国应助WW采纳,获得10
12秒前
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
TOWARD A HISTORY OF THE PALEOZOIC ASTEROIDEA (ECHINODERMATA) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5123034
求助须知:如何正确求助?哪些是违规求助? 4327617
关于积分的说明 13484959
捐赠科研通 4161732
什么是DOI,文献DOI怎么找? 2281010
邀请新用户注册赠送积分活动 1282501
关于科研通互助平台的介绍 1221550