亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Semantic Segmentation for Automatic Crack Detection Within Pavement Images Using Multi-Mixing of Global Context and Local Image Features

人工智能 计算机视觉 分割 背景(考古学) 图像分割 计算机科学 混合(物理) 模式识别(心理学) 尺度空间分割 图像(数学) 地质学 物理 古生物学 量子力学
作者
Hang Zhang,Allen A. Zhang,Zishuo Dong,Anzheng He,Yang Liu,You Zhan,Kelvin C. P. Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 11282-11303 被引量:30
标识
DOI:10.1109/tits.2024.3360263
摘要

Accurate identification of cracks at the pixel level on intricate asphalt pavements represents a crucial challenge in the domain of intelligent pavement assessment. The current advanced deep-learning networks encounter limitations in simultaneously capturing both the global context and local features of cracks, leading to discontinuous segmentation results and suboptimal recovery of local details. This paper proposes a robust architecture named Mix-Graph CrackNet to present an efficacious solution for this challenge. The Mix-Graph CrackNet, as proposed, is designed to mix the global context and local features multiple times, allowing for a comprehensively understanding of the essential features. Specifically, this paper develops the learnable parallel convolutional-Transformer mixing module to parallelly capture the sophisticated local features as well as the crucial global context. In addition, a new fusion unit is devised in the paper and deployed in the learnable parallel convolutional-Transformer mixing module. The proposed fusion unit is capable of effectively mixing contextual features extracted at both global and local scales while retaining an abundant level of textural details germane to the crack. Moreover, this paper constructs a graph-based skip connection that functions as a shortcut connecting the encoder and decoder, with the primary objective of mitigating information decay. The experimental results are remarkable, with the Mix-Graph CrackNet achieving F-measure and Intersection-Over-Union of 90.37% and 82.43%, respectively, on 1000 testing images. Based on the performance evaluations conducted on both public and private datasets, the proposed Mix-Graph CrackNet architecture demonstrates a significantly superior detection accuracy in comparison to several state-of-the-art models for semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
18秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得10
25秒前
chunlily完成签到,获得积分10
30秒前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
郗妫完成签到,获得积分10
1分钟前
1分钟前
jiaqiao发布了新的文献求助10
1分钟前
2分钟前
爆米花应助安静海露采纳,获得10
2分钟前
2分钟前
2分钟前
moika发布了新的文献求助10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
安静海露发布了新的文献求助10
2分钟前
如意竺完成签到,获得积分0
2分钟前
哈哈哈完成签到 ,获得积分10
3分钟前
3分钟前
红火完成签到 ,获得积分10
3分钟前
三三完成签到,获得积分10
3分钟前
三心草完成签到 ,获得积分10
3分钟前
斯文的访烟完成签到,获得积分10
3分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
科目三应助moika采纳,获得10
5分钟前
444发布了新的文献求助10
6分钟前
打打应助安静海露采纳,获得10
6分钟前
科研通AI6应助444采纳,获得10
6分钟前
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772968
求助须知:如何正确求助?哪些是违规求助? 5604636
关于积分的说明 15430227
捐赠科研通 4905689
什么是DOI,文献DOI怎么找? 2639648
邀请新用户注册赠送积分活动 1587551
关于科研通互助平台的介绍 1542496