清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Robust Semantic Segmentation for Automatic Crack Detection Within Pavement Images Using Multi-Mixing of Global Context and Local Image Features

人工智能 计算机视觉 分割 背景(考古学) 图像分割 计算机科学 混合(物理) 模式识别(心理学) 尺度空间分割 图像(数学) 地质学 物理 古生物学 量子力学
作者
Hang Zhang,Allen Zhang,Zishuo Dong,Anzheng He,Yang Liu,You Zhan,Kelvin C. P. Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-22 被引量:3
标识
DOI:10.1109/tits.2024.3360263
摘要

Accurate identification of cracks at the pixel level on intricate asphalt pavements represents a crucial challenge in the domain of intelligent pavement assessment. The current advanced deep-learning networks encounter limitations in simultaneously capturing both the global context and local features of cracks, leading to discontinuous segmentation results and suboptimal recovery of local details. This paper proposes a robust architecture named Mix-Graph CrackNet to present an efficacious solution for this challenge. The Mix-Graph CrackNet, as proposed, is designed to mix the global context and local features multiple times, allowing for a comprehensively understanding of the essential features. Specifically, this paper develops the learnable parallel convolutional-Transformer mixing module to parallelly capture the sophisticated local features as well as the crucial global context. In addition, a new fusion unit is devised in the paper and deployed in the learnable parallel convolutional-Transformer mixing module. The proposed fusion unit is capable of effectively mixing contextual features extracted at both global and local scales while retaining an abundant level of textural details germane to the crack. Moreover, this paper constructs a graph-based skip connection that functions as a shortcut connecting the encoder and decoder, with the primary objective of mitigating information decay. The experimental results are remarkable, with the Mix-Graph CrackNet achieving F-measure and Intersection-Over-Union of 90.37% and 82.43%, respectively, on 1000 testing images. Based on the performance evaluations conducted on both public and private datasets, the proposed Mix-Graph CrackNet architecture demonstrates a significantly superior detection accuracy in comparison to several state-of-the-art models for semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YK发布了新的文献求助10
4秒前
56秒前
Hello应助belssingoo采纳,获得200
1分钟前
1分钟前
俏皮的山水完成签到,获得积分10
1分钟前
belssingoo发布了新的文献求助10
1分钟前
1分钟前
小炮仗完成签到 ,获得积分10
1分钟前
老迟到的元霜完成签到,获得积分10
2分钟前
叶潭完成签到,获得积分10
2分钟前
JueruiWang1258完成签到,获得积分10
3分钟前
魏白晴完成签到,获得积分10
3分钟前
clock完成签到,获得积分10
4分钟前
1437594843完成签到 ,获得积分10
5分钟前
5分钟前
啦啦发布了新的文献求助10
5分钟前
啦啦完成签到,获得积分10
6分钟前
fhw完成签到 ,获得积分10
6分钟前
6分钟前
zhangzhang发布了新的文献求助10
6分钟前
gwbk完成签到,获得积分10
7分钟前
方白秋完成签到,获得积分10
8分钟前
9分钟前
belssingoo发布了新的文献求助200
9分钟前
万能图书馆应助杜梦婷采纳,获得30
10分钟前
10分钟前
杜梦婷发布了新的文献求助30
10分钟前
10分钟前
结实的半双发布了新的文献求助200
10分钟前
想游泳的鹰完成签到,获得积分10
13分钟前
thangxtz完成签到,获得积分10
13分钟前
隐形曼青应助Ma采纳,获得10
13分钟前
13分钟前
Ma发布了新的文献求助10
13分钟前
andrele应助Ma采纳,获得10
13分钟前
肆肆完成签到,获得积分10
14分钟前
小小果妈完成签到 ,获得积分10
16分钟前
jnrr完成签到 ,获得积分10
16分钟前
杨政远发布了新的文献求助10
17分钟前
SW发布了新的文献求助10
17分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229738
求助须知:如何正确求助?哪些是违规求助? 2877248
关于积分的说明 8198664
捐赠科研通 2544723
什么是DOI,文献DOI怎么找? 1374636
科研通“疑难数据库(出版商)”最低求助积分说明 647010
邀请新用户注册赠送积分活动 621836