Robust Semantic Segmentation for Automatic Crack Detection Within Pavement Images Using Multi-Mixing of Global Context and Local Image Features

人工智能 计算机视觉 分割 背景(考古学) 图像分割 计算机科学 混合(物理) 模式识别(心理学) 尺度空间分割 图像(数学) 地质学 物理 古生物学 量子力学
作者
Hang Zhang,Allen A. Zhang,Zishuo Dong,Anzheng He,Yang Liu,You Zhan,Kelvin C. P. Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (9): 11282-11303 被引量:8
标识
DOI:10.1109/tits.2024.3360263
摘要

Accurate identification of cracks at the pixel level on intricate asphalt pavements represents a crucial challenge in the domain of intelligent pavement assessment. The current advanced deep-learning networks encounter limitations in simultaneously capturing both the global context and local features of cracks, leading to discontinuous segmentation results and suboptimal recovery of local details. This paper proposes a robust architecture named Mix-Graph CrackNet to present an efficacious solution for this challenge. The Mix-Graph CrackNet, as proposed, is designed to mix the global context and local features multiple times, allowing for a comprehensively understanding of the essential features. Specifically, this paper develops the learnable parallel convolutional-Transformer mixing module to parallelly capture the sophisticated local features as well as the crucial global context. In addition, a new fusion unit is devised in the paper and deployed in the learnable parallel convolutional-Transformer mixing module. The proposed fusion unit is capable of effectively mixing contextual features extracted at both global and local scales while retaining an abundant level of textural details germane to the crack. Moreover, this paper constructs a graph-based skip connection that functions as a shortcut connecting the encoder and decoder, with the primary objective of mitigating information decay. The experimental results are remarkable, with the Mix-Graph CrackNet achieving F-measure and Intersection-Over-Union of 90.37% and 82.43%, respectively, on 1000 testing images. Based on the performance evaluations conducted on both public and private datasets, the proposed Mix-Graph CrackNet architecture demonstrates a significantly superior detection accuracy in comparison to several state-of-the-art models for semantic segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萧水白应助dai采纳,获得10
2秒前
aaaa发布了新的文献求助10
4秒前
竹音完成签到,获得积分10
5秒前
子伯完成签到,获得积分10
5秒前
自信的昊焱完成签到,获得积分10
8秒前
今后应助四季夏目采纳,获得10
9秒前
阿槿发布了新的文献求助10
11秒前
善学以致用应助idynamics采纳,获得10
12秒前
12秒前
15秒前
17秒前
捷克发布了新的文献求助10
18秒前
七叶树完成签到,获得积分10
18秒前
小彤完成签到 ,获得积分10
20秒前
Orange应助小黑采纳,获得10
21秒前
清爽擎汉完成签到,获得积分20
21秒前
猪猪hero发布了新的文献求助10
21秒前
默listening发布了新的文献求助10
22秒前
25秒前
liberation完成签到 ,获得积分0
25秒前
领导范儿应助Roussinsalt采纳,获得10
26秒前
万能图书馆应助阿槿采纳,获得10
27秒前
28秒前
SYLH应助祥子的骆驼采纳,获得10
29秒前
29秒前
清爽擎汉关注了科研通微信公众号
32秒前
小黑发布了新的文献求助10
32秒前
研友_VZG7GZ应助小火苗采纳,获得10
33秒前
默listening完成签到,获得积分10
33秒前
33秒前
卡奇Mikey完成签到,获得积分10
34秒前
眠眠清完成签到 ,获得积分10
35秒前
35秒前
李健应助lotus采纳,获得30
35秒前
35秒前
感性的夜玉完成签到,获得积分10
36秒前
balmy完成签到 ,获得积分10
37秒前
阿槿完成签到,获得积分20
37秒前
38秒前
朴素友安完成签到 ,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343