Separating Scarring Effect and Selection of Early-Life Exposures With Genetic Data

选择(遗传算法) 生命历程法 学历 选择偏差 人口学 生命银行 遗传力 医学 心理学 生物 发展心理学 遗传学 病理 人工智能 计算机科学 社会学 经济 经济增长
作者
Shiro Furuya,Fengyi Zheng,Qiongshi Lu,Jason M. Fletcher
出处
期刊:Demography [Duke University Press]
卷期号:61 (2): 363-392
标识
DOI:10.1215/00703370-11239766
摘要

Abstract Causal life course research examining consequences of early-life exposures has largely relied on associations between early-life environments and later-life outcomes using exogenous environmental shocks. Nonetheless, even with (quasi-)randomized early-life exposures, these associations may reflect not only causation (“scarring”) but also selection (i.e., which members are included in data assessing later life). Investigating this selection and its impacts on estimated effects of early-life conditions has, however, often been ignored because of a lack of pre-exposure data. This study proposes an approach for assessing and correcting selection, separately from scarring, using genetic measurements. Because genetic measurements are determined at the time of conception, any associations with early-life exposures should be interpreted as selection. Using data from the UK Biobank, we find that in utero exposure to a higher area-level infant mortality rate is associated with genetic predispositions correlated with better educational attainment and health. These findings point to the direction and magnitude of selection from this exposure. Corrections for this selection in examinations of effects of exposure on later educational attainment suggest underestimates of 26–74%; effects on other life course outcomes also vary across selection correction methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听风完成签到 ,获得积分10
刚刚
糖果苏扬完成签到 ,获得积分10
1秒前
jasmineee完成签到,获得积分10
1秒前
lurenjia009发布了新的文献求助10
1秒前
Orange应助小橙子采纳,获得10
1秒前
iiing完成签到 ,获得积分10
2秒前
想跟这个世界讲个道理完成签到,获得积分10
2秒前
2秒前
2秒前
Eva发布了新的文献求助10
3秒前
张有志应助本杰明采纳,获得30
3秒前
Dandelion完成签到,获得积分10
3秒前
完美世界应助葛辉辉采纳,获得10
4秒前
龙泉完成签到 ,获得积分10
4秒前
Khr1stINK发布了新的文献求助20
4秒前
美女发布了新的文献求助10
4秒前
汉堡包应助烫嘴普通话采纳,获得10
4秒前
长颈鹿完成签到,获得积分10
6秒前
Koi完成签到,获得积分10
6秒前
打卤完成签到,获得积分10
6秒前
CodeCraft应助Intro采纳,获得10
7秒前
SciGPT应助cat采纳,获得10
7秒前
Minkslion发布了新的文献求助10
7秒前
8秒前
酷波er应助细腻的麦片采纳,获得10
9秒前
lurenjia009完成签到,获得积分10
10秒前
10秒前
科研通AI5应助huangyi采纳,获得10
11秒前
yxy完成签到,获得积分10
11秒前
Orange应助yam001采纳,获得30
11秒前
11秒前
竹斟酒完成签到,获得积分10
12秒前
12秒前
12秒前
请叫我风吹麦浪应助Wxd0211采纳,获得10
12秒前
12秒前
12秒前
深情安青应助美女采纳,获得10
13秒前
111完成签到,获得积分10
13秒前
葛辉辉完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762