The Advancement in Spring Vegetation Phenology in the Northern Hemisphere Will Reverse After 2060 Under Future Moderate Warming Scenarios

物候学 弹簧(装置) 植被(病理学) 北半球 环境科学 气候变化 农林复合经营 气候学 自然地理学 地理 农学 生态学 生物 工程类 地质学 机械工程 医学 病理
作者
Yunhua Mo,Shouzhi Chen,Zhaofei Wu,Jing Tang,Yongshuo H. Fu
出处
期刊:Earth’s Future [Wiley]
卷期号:12 (3) 被引量:2
标识
DOI:10.1029/2023ef003788
摘要

Abstract Global warming has largely advanced spring vegetation phenology, which has subsequently affected terrestrial carbon and water cycles. However, further shifts in vegetation phenology under future climate change remain unclear. We estimated the start of the growing season (SOS) by applying multiple extraction methods based on the NDVI3g data set, and then parameterized and evaluated 11 spring vegetation phenology models that included chilling, forcing, and the photoperiod. Based on scenario data from three Shared Socioeconomic Pathways (SSP126, SSP245, and SSP585) derived from eight climate models, future vegetation phenology was predicted using the phenology models. Results showed that all the phenology models performed better than the NULL model (mean of the SOS), with the performance of one‐phase models broadly matching that of two‐phase models, although the best models varied by vegetation type. The spatial pattern of simulated SOS was similar among the models, and it explained >75% of the variation. Based on the mean predicted SOS, we found that spring vegetation phenology will continue to advance under strong warming conditions (SSP245 and SSP585), but that the trend of advance will reverse at around 2060 under the SSP126 scenario. The continued trend in SOS advance is likely related to rapid forcing fulfillment under stronger warming conditions. However, under moderate warming, chilling might be reduced and it might require longer to compensate for higher forcing, which ultimately would result in SOS delay. Our findings highlight that trends will likely change under different warming conditions, potentially causing widespread impact on species interaction, biodiversity, and ecosystem function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
居蓝发布了新的文献求助10
刚刚
wwww发布了新的文献求助50
刚刚
李健的小迷弟应助WANG采纳,获得10
刚刚
墨白白发布了新的文献求助10
1秒前
天真的小珍完成签到,获得积分20
1秒前
1秒前
18621058639完成签到,获得积分10
2秒前
MYY发布了新的文献求助10
2秒前
2秒前
3秒前
科目三应助麦乐迪采纳,获得30
3秒前
纯情的菀发布了新的文献求助10
3秒前
4秒前
4秒前
小葡萄发布了新的文献求助10
4秒前
哈哈哈哈发布了新的文献求助10
4秒前
4秒前
蜗牛完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
劲秉应助lingyan hu采纳,获得10
5秒前
小老板的手抓饼完成签到,获得积分10
5秒前
科研通AI2S应助善良绮菱采纳,获得30
6秒前
JY完成签到,获得积分20
6秒前
6秒前
独特的飞雪完成签到,获得积分10
6秒前
一条咸鱼发布了新的文献求助10
7秒前
寂寞的季节完成签到,获得积分10
7秒前
chenweijie完成签到,获得积分10
7秒前
SCIAI发布了新的文献求助10
7秒前
Owen应助天天喝咖啡采纳,获得10
7秒前
swagger发布了新的文献求助10
8秒前
9秒前
大方汉堡完成签到,获得积分10
9秒前
QL发布了新的文献求助10
9秒前
Ujjel75发布了新的文献求助10
10秒前
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481226
求助须知:如何正确求助?哪些是违规求助? 3071419
关于积分的说明 9122057
捐赠科研通 2763201
什么是DOI,文献DOI怎么找? 1516316
邀请新用户注册赠送积分活动 701479
科研通“疑难数据库(出版商)”最低求助积分说明 700319