Emerging cellulosic materials for sustainable mechanosensing and energy harvesting devices: Advances and prospect

纤维素乙醇 可持续能源 生化工程 纳米技术 环境科学 工程类 材料科学 可再生能源 纤维素 电气工程 化学工程
作者
Jiaqi Liao,Julia L. Shamshina,Yuanyuan Wang,Dan Sun,Xiaoping Shen,Dawei Zhao,Qingfeng Sun
出处
期刊:Nano Today [Elsevier BV]
卷期号:56: 102232-102232 被引量:12
标识
DOI:10.1016/j.nantod.2024.102232
摘要

Triboelectric nanogenerators (TENGs), as promising energy-generating devices, have paved the way for efficient energy collection at the micro-nanoscale since their inception in 2012. TENG technology can convert low-frequency, irregular minor dynamic mechanical motions into usable electrical energy, serving the dual purposes of mechanosensing and energy harvesting. Cellulose, a common biomacromolecule widely found in plants, emerges as a promising candidate for the development of versatile TENG devices due to its abundance of highly polar hydroxyl groups (-OH), which can be easily chemically modified and structurally processed. This review emphasizes the distinctive hierarchical structure of cellulose mainly extracted from wood cell walls, presenting it as macromolecular chains, nanofibers, nanosheets, and other aggregates based on the deciphering of wood cell walls. Leveraging their favorable properties of renewability, biodegradability, biocompatibility, and processability, various cellulose-based materials, including films, aerogels, hydrogels, and ionogels, are manufactured with controlled flexibility, polarity, conductivity, specific surface area, and mechanical resilience. Subsequently, the inherent capability and intrinsic mechanisms of these cellulose-based materials in electron donation and acceptance are discussed, culminating in proposed optimization strategies for the modification of cellulosic triboelectric friction materials and device configuration aimed at enhancing the surface charge density of TENGs. The potential benefits and challenges of using cellulose-based TENGs for mechanosensing and energy harvesting are also presented and discussed in detail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助dogontree采纳,获得10
1秒前
阳光血茗完成签到,获得积分10
5秒前
5秒前
啦啦啦发布了新的文献求助30
5秒前
6秒前
6秒前
万能图书馆应助molinsky2006采纳,获得10
6秒前
7秒前
研友_VZG7GZ应助包容若风采纳,获得10
8秒前
丰富无色发布了新的文献求助10
10秒前
小杰完成签到 ,获得积分10
10秒前
脑洞疼应助天使睿宝包采纳,获得10
11秒前
科研通AI5应助张强采纳,获得10
11秒前
现代的紫霜完成签到,获得积分10
11秒前
11秒前
12秒前
12秒前
多情蓝发布了新的文献求助30
14秒前
15秒前
上官若男应助丰富无色采纳,获得10
16秒前
小木子发布了新的文献求助10
17秒前
zhying55发布了新的文献求助10
17秒前
伊笙发布了新的文献求助10
17秒前
17秒前
搜集达人应助皮皮虾采纳,获得10
19秒前
疯狂的虔完成签到,获得积分10
19秒前
laxy发布了新的文献求助10
19秒前
活泼的龙猫完成签到,获得积分20
21秒前
22秒前
Sera发布了新的文献求助10
23秒前
大力便当发布了新的文献求助10
24秒前
壮观复天完成签到 ,获得积分10
25秒前
东吴发布了新的文献求助10
25秒前
26秒前
疯狂老登完成签到,获得积分10
29秒前
JamesPei应助乐仔采纳,获得30
29秒前
1423574925发布了新的文献求助10
30秒前
31秒前
哈哈哈哈哈完成签到 ,获得积分10
32秒前
烟花发布了新的文献求助10
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752547
求助须知:如何正确求助?哪些是违规求助? 3296091
关于积分的说明 10092821
捐赠科研通 3010979
什么是DOI,文献DOI怎么找? 1653508
邀请新用户注册赠送积分活动 788267
科研通“疑难数据库(出版商)”最低求助积分说明 752789