3D Single Vessel Fractional Moving Blood Volume (3D-svFMBV): Fully Automated Tissue Perfusion Estimation Using Ultrasound

超声波 灌注 计算机科学 血容量 生物医学工程 三维超声 灌注扫描 血流 人工智能 放射科 医学 心脏病学
作者
Yi Yin,Alys R. Clark,Sally Collins
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (7): 2707-2717
标识
DOI:10.1109/tmi.2024.3376668
摘要

Power Doppler ultrasound (PD-US) is the ideal modality to assess tissue perfusion as it is cheap, patient-friendly and does not require ionizing radiation. However, meaningful inter-patient comparison only occurs if differences in tissue-attenuation are corrected for. This can be done by standardizing the PD-US signal to a blood vessel assumed to have 100% vascularity. The original method to do this is called fractional moving blood volume (FMBV). We describe a novel, fully-automated method combining image processing, numerical modelling, and deep learning to estimate three-dimensional single vessel fractional moving blood volume (3D-svFMBV). We map the PD signals to a characteristic intensity profile within a single large vessel to define the standardization value at the high shear vessel margins. This removes the need for mathematical correction for background signal which can introduce error. The 3D-svFMBV was first tested on synthetic images generated using the characteristics of uterine artery and physiological ultrasound noise levels, demonstrating prediction of standardization value close to the theoretical ideal. Clinical utility was explored using 143 first-trimester placental ultrasound volumes. More biologically plausible perfusion estimates were obtained, showing improved prediction of pre-eclampsia compared with those generated with the semi-automated original 3D-FMBV technique. The proposed 3D-svFMBV method overcomes the limitations of the original technique to provide accurate and robust placental perfusion estimation. This not only has the potential to provide an early pregnancy screening tool but may also be used to assess perfusion of different organs and tumors.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
思源应助1111采纳,获得10
2秒前
瓜兮兮CYY完成签到,获得积分10
3秒前
CodeCraft应助娇气的稚晴采纳,获得10
4秒前
4秒前
5秒前
可爱的函函应助奋斗佳裕采纳,获得30
5秒前
安沁完成签到,获得积分10
5秒前
慕青应助freebird采纳,获得30
6秒前
www完成签到,获得积分10
6秒前
6秒前
俊秀的香氛完成签到,获得积分10
7秒前
RED发布了新的文献求助10
7秒前
香蕉觅云应助Calvin采纳,获得10
7秒前
情怀应助Zzzz采纳,获得10
7秒前
qianww发布了新的文献求助10
8秒前
爆米花应助露露采纳,获得10
8秒前
LL应助喜悦的芷采纳,获得10
9秒前
9秒前
10秒前
zhangxin完成签到,获得积分10
10秒前
10秒前
duna发布了新的文献求助20
11秒前
怡然思萱完成签到 ,获得积分10
11秒前
柚子皮应助肾小球呵呵采纳,获得30
13秒前
13秒前
可爱的函函应助简单如容采纳,获得10
13秒前
13秒前
APP发布了新的文献求助10
14秒前
14秒前
李爱国应助柒八染采纳,获得10
15秒前
QQ星完成签到,获得积分10
16秒前
zl应助自由大叔采纳,获得10
17秒前
www发布了新的文献求助10
18秒前
ABBYTHU18完成签到,获得积分10
18秒前
wblydz发布了新的文献求助10
19秒前
lcm发布了新的文献求助10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3563884
求助须知:如何正确求助?哪些是违规求助? 3137084
关于积分的说明 9421008
捐赠科研通 2837557
什么是DOI,文献DOI怎么找? 1559894
邀请新用户注册赠送积分活动 729212
科研通“疑难数据库(出版商)”最低求助积分说明 717195