Revisiting drug–protein interaction prediction: a novel global–local perspective

计算机科学 推论 药物重新定位 二部图 机器学习 数据挖掘 图形 人工智能 理论计算机科学 药品 心理学 精神科
作者
Zhecheng Zhou,Qingquan Liao,Jinhang Wei,Linlin Zhuo,Xiaonan Wu,Xiangzheng Fu,Quan Zou
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (5) 被引量:3
标识
DOI:10.1093/bioinformatics/btae271
摘要

Abstract Motivation Accurate inference of potential drug–protein interactions (DPIs) aids in understanding drug mechanisms and developing novel treatments. Existing deep learning models, however, struggle with accurate node representation in DPI prediction, limiting their performance. Results We propose a new computational framework that integrates global and local features of nodes in the drug–protein bipartite graph for efficient DPI inference. Initially, we employ pre-trained models to acquire fundamental knowledge of drugs and proteins and to determine their initial features. Subsequently, the MinHash and HyperLogLog algorithms are utilized to estimate the similarity and set cardinality between drug and protein subgraphs, serving as their local features. Then, an energy-constrained diffusion mechanism is integrated into the transformer architecture, capturing interdependencies between nodes in the drug–protein bipartite graph and extracting their global features. Finally, we fuse the local and global features of nodes and employ multilayer perceptrons to predict the likelihood of potential DPIs. A comprehensive and precise node representation guarantees efficient prediction of unknown DPIs by the model. Various experiments validate the accuracy and reliability of our model, with molecular docking results revealing its capability to identify potential DPIs not present in existing databases. This approach is expected to offer valuable insights for furthering drug repurposing and personalized medicine research. Availability and implementation Our code and data are accessible at: https://github.com/ZZCrazy00/DPI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
Ava应助gyx采纳,获得10
3秒前
eagle14835发布了新的文献求助10
3秒前
丘比特应助run采纳,获得10
4秒前
Happy422完成签到 ,获得积分10
4秒前
yang发布了新的文献求助10
4秒前
4秒前
大胆的菠萝完成签到 ,获得积分10
5秒前
手残症完成签到,获得积分10
5秒前
6秒前
清茗发布了新的文献求助10
6秒前
o2ptf6完成签到,获得积分10
6秒前
成就寒珊完成签到,获得积分20
6秒前
勤劳的音响完成签到,获得积分10
7秒前
曾经如凡完成签到,获得积分10
7秒前
儒雅慕灵发布了新的文献求助10
7秒前
xiaozhang完成签到,获得积分10
8秒前
彭于晏应助幸福蓝血采纳,获得10
8秒前
单薄的蜗牛完成签到,获得积分20
8秒前
小邹完成签到,获得积分20
8秒前
scinanpro完成签到 ,获得积分10
9秒前
Singularity应助坚强依波采纳,获得10
9秒前
毛豆应助桑榆非晚采纳,获得10
9秒前
11秒前
西西完成签到,获得积分10
11秒前
11秒前
叮叮当应助苞大米采纳,获得100
11秒前
樱香音子完成签到,获得积分10
11秒前
11秒前
烂漫的千萍完成签到,获得积分10
11秒前
希望天下0贩的0应助清茗采纳,获得10
11秒前
VV完成签到,获得积分10
13秒前
14秒前
于凌娇完成签到,获得积分10
15秒前
HY发布了新的文献求助30
15秒前
15秒前
lu完成签到 ,获得积分10
15秒前
lu完成签到 ,获得积分10
15秒前
drywell完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304792
求助须知:如何正确求助?哪些是违规求助? 2938738
关于积分的说明 8489795
捐赠科研通 2613236
什么是DOI,文献DOI怎么找? 1427209
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647557