肝素
实时聚合酶链反应
生物
病毒学
药理学
分子生物学
生物化学
基因
作者
Kathryn M. Edwards,Tayla‐Ann Corocher,Y. Hersusianto,Donald Campbell,Kanta Subbarao,Jessica A. Neil,Paul Monagle,Prahlad Ho
标识
DOI:10.1016/j.jviromet.2024.114944
摘要
Heparin is postulated to block the interaction of SARS-CoV-2 with highly glycosylated proteins which are critical for binding the angiotensin-converting enzyme 2 (ACE2), an essential mechanism for host-cell entry and viral replication. Intranasal heparin is under investigation for use as a SARS-CoV-2 preventative in the IntraNasal Heparin Trial (INHERIT, NCT05204550). Heparin directly interferes with real-time quantitative polymerase chain reaction (RT-qPCR), the gold standard for SARS-CoV-2 detection. This study aimed to investigate the magnitude of heparin interference across various clinical laboratory testing platforms, and the reversal of any interference by degradation of heparin using the heparinase I enzyme in nasopharyngeal swab (NP) samples for SARS-CoV-2 analysis by RT-qPCR. Heparin-mediated PCR interference was evident at heparin concentrations as low as 10 IU/mL across all platforms tested, with the exclusion of the Hologic Panther Aptima SARS-CoV-2 assay. Rates of false negative or invalid results and falsely elevated cycle threshold (Ct) values increased with increasing heparin concentrations on all platforms, except the Hologic Panther Aptima and Roche Cobas LIAT. Heparinase I reversed heparin-mediated PCR inhibition across in all samples tested, except those with initial Ct values >35. Our study shows that the use of heparin-containing nasal sprays interferes with the detection of SARS-CoV-2 in NP swab samples by RT-qPCR, a phenomenon that is not well recognised in the literature. Furthermore, this study has also demonstrated that heparin-mediated PCR inhibition can be prevented through heparinase I treatment, demonstrating restoration of clinically significant results with Ct values <35.
科研通智能强力驱动
Strongly Powered by AbleSci AI