Limited terrestrial carbon sinks and increasing carbon emissions from the Hu Line spatial pattern perspective in China

碳纤维 碳汇 透视图(图形) 中国 环境科学 温室气体 碳循环 直线(几何图形) 生态学 气候变化 地理 生态系统 生物 计算机科学 数学 几何学 考古 算法 人工智能 复合数
作者
Hezhen Lou,Xuewei Shi,Xiaoyu Ren,Shengtian Yang,Mingyong Cai,Zihao Pan,Yifan Zhu,Danyang Feng,Baichi Zhou
出处
期刊:Ecological Indicators [Elsevier]
卷期号:162: 112035-112035 被引量:9
标识
DOI:10.1016/j.ecolind.2024.112035
摘要

China's commitment to achieving the goal of carbon peak and carbon neutrality (CPCN) has attracted worldwide attention, and the efforts made by China are critical to realization of the 1.5 °C temperature control objective of the 2015 Paris Agreement. However, it is unclear whether long-term spatiotemporal changes in China's carbon emissions and carbon sinks exhibit specific spatial patterns, such as the Hu Line, which might affect China's future policymaking. Based on the emission factor, inventory, and eddy covariance methods, this study calculated China's carbon emissions (2003–2018) and terrestrial carbon sinks (2003–2020). Results showed that the increase in carbon sinks is limited in comparison with the increase in carbon emissions, and that the carbon sequestration ratio remains deficient and generally maintained at around 10 %. The spatial pattern of carbon emissions and carbon sinks showed an unbalanced state across the Hu Line, mainly reflected in accelerated increase in both the carbon emission rankings and the proportion of emissions to China's total carbon emissions of provinces on the northwestern side of the Hu Line. Despite this, the gross domestic product (GDP) rankings of those provinces have not improved substantially, whereas provinces on the southeastern side of the Hu Line have contributed most to China's GDP and terrestrial carbon sinks. The findings of this study improve understanding of the spatiotemporal relationship between carbon emissions and terrestrial carbon sinks in China, and represent alternative insights that could support adjustment of carbon-related policies and promote realization of CPCN in China.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mumu三完成签到,获得积分10
刚刚
1秒前
小陈发布了新的文献求助10
1秒前
2秒前
布丁果冻完成签到,获得积分20
3秒前
4秒前
4秒前
一塔湖图发布了新的文献求助10
4秒前
4秒前
5秒前
彭于彦祖应助00采纳,获得50
5秒前
长乐完成签到,获得积分10
6秒前
Ava应助桂花乌龙采纳,获得10
6秒前
韩soso发布了新的文献求助10
6秒前
三黑猫应助hhhhhhhh采纳,获得10
7秒前
8秒前
8秒前
9秒前
9秒前
而与白醋完成签到,获得积分10
11秒前
11秒前
月月完成签到,获得积分10
11秒前
三黑猫应助烨伟采纳,获得10
11秒前
12秒前
12秒前
sing发布了新的文献求助10
12秒前
12秒前
13秒前
努力合成发布了新的文献求助10
13秒前
哈哈发布了新的文献求助10
15秒前
15秒前
潇公子完成签到,获得积分10
15秒前
16秒前
小付关注了科研通微信公众号
16秒前
别绪叁仟发布了新的文献求助10
17秒前
爱听歌的寒香完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
Ying发布了新的文献求助20
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305946
求助须知:如何正确求助?哪些是违规求助? 2939710
关于积分的说明 8494418
捐赠科研通 2614004
什么是DOI,文献DOI怎么找? 1427888
科研通“疑难数据库(出版商)”最低求助积分说明 663199
邀请新用户注册赠送积分活动 648032