亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MASKCRYPT: Federated Learning with Selective Homomorphic Encryption

同态加密 计算机科学 加密 计算机安全 理论计算机科学
作者
Chenghao Hu,Baochun Li
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:15
标识
DOI:10.1109/tdsc.2024.3392424
摘要

The federated learning paradigm protects private data from explicit leakage, yet exposing the model weights still raises serious privacy concerns with well-known attacks, such as membership inference attacks. It has been acknowledged that mechanisms such as homomorphic encryption and differential privacy can be adopted to provide a higher level of protection. However, these mechanisms may incur a formidable amount of overhead and reductions in training performance, which make them unlikely to be employed in real-world applications. In this paper, we propose MaskCrypt , a new mechanism designed to balance the trade-off between security and practicality when homomorphic encryption is used. Rather than encrypting model updates in their entirety, MaskCrypt applies an encryption mask to sift out a small portion of the updates for encryption. Specifically, each MaskCrypt client adopts a gradient-guided mechanism to select the encryption mask, which aims to obfuscate the training trace by maximizing the local loss value of exposed model weights, and then sending the individual mask to a special Mask Consensus mechanism to obtain a final mask for all clients. Our experimental results have shown convincing evidence that with a small encrypt ratio, MaskCrypt reduced the communication overhead by up to 4.15× compared with encrypting entire model updates, yet still effectively protected the client's private data against inversion attacks, and reduced the accuracy of membership inference attacks to 49.2%.w
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MchemG应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得30
1秒前
9秒前
彭于晏应助欣喜秋天采纳,获得10
9秒前
Jolly发布了新的文献求助30
13秒前
wanci应助555采纳,获得10
16秒前
51秒前
欣喜秋天发布了新的文献求助10
56秒前
1分钟前
123123发布了新的文献求助10
1分钟前
1分钟前
123123完成签到,获得积分10
1分钟前
zzzzz发布了新的文献求助10
1分钟前
1分钟前
英俊的铭应助欣喜秋天采纳,获得10
1分钟前
1分钟前
CHX发布了新的文献求助10
1分钟前
欣喜秋天完成签到,获得积分10
1分钟前
ls完成签到,获得积分10
1分钟前
1分钟前
WYDNBDX2013发布了新的文献求助10
1分钟前
今后应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
MchemG应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
彭于晏应助科研通管家采纳,获得10
2分钟前
CodeCraft应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Ava应助WYDNBDX2013采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
TwentyNine完成签到,获得积分10
2分钟前
mono发布了新的文献求助30
2分钟前
2分钟前
mono完成签到,获得积分10
2分钟前
MOMO发布了新的文献求助10
2分钟前
阔达的沛文完成签到,获得积分10
2分钟前
2分钟前
2分钟前
biebie发布了新的文献求助20
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5459225
求助须知:如何正确求助?哪些是违规求助? 4564934
关于积分的说明 14297314
捐赠科研通 4490026
什么是DOI,文献DOI怎么找? 2459507
邀请新用户注册赠送积分活动 1449159
关于科研通互助平台的介绍 1424647