MASKCRYPT: Federated Learning with Selective Homomorphic Encryption

同态加密 计算机科学 加密 计算机安全 理论计算机科学
作者
Chenghao Hu,Baochun Li
出处
期刊:IEEE Transactions on Dependable and Secure Computing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tdsc.2024.3392424
摘要

The federated learning paradigm protects private data from explicit leakage, yet exposing the model weights still raises serious privacy concerns with well-known attacks, such as membership inference attacks. It has been acknowledged that mechanisms such as homomorphic encryption and differential privacy can be adopted to provide a higher level of protection. However, these mechanisms may incur a formidable amount of overhead and reductions in training performance, which make them unlikely to be employed in real-world applications. In this paper, we propose MaskCrypt , a new mechanism designed to balance the trade-off between security and practicality when homomorphic encryption is used. Rather than encrypting model updates in their entirety, MaskCrypt applies an encryption mask to sift out a small portion of the updates for encryption. Specifically, each MaskCrypt client adopts a gradient-guided mechanism to select the encryption mask, which aims to obfuscate the training trace by maximizing the local loss value of exposed model weights, and then sending the individual mask to a special Mask Consensus mechanism to obtain a final mask for all clients. Our experimental results have shown convincing evidence that with a small encrypt ratio, MaskCrypt reduced the communication overhead by up to 4.15× compared with encrypting entire model updates, yet still effectively protected the client's private data against inversion attacks, and reduced the accuracy of membership inference attacks to 49.2%.w
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yangyang发布了新的文献求助10
刚刚
www发布了新的文献求助30
刚刚
刚刚
同福发布了新的文献求助10
刚刚
刚刚
白桦林完成签到 ,获得积分20
刚刚
坚强的笑天完成签到,获得积分10
1秒前
yzlsci完成签到,获得积分0
1秒前
科研通AI2S应助尛瞐慶成采纳,获得10
2秒前
2秒前
夜斗完成签到,获得积分10
2秒前
小中完成签到 ,获得积分10
2秒前
huang发布了新的文献求助10
2秒前
满意非笑发布了新的文献求助10
3秒前
faizaxel完成签到,获得积分10
3秒前
七七完成签到 ,获得积分10
4秒前
bryan.yuan完成签到,获得积分0
4秒前
4秒前
5秒前
枫叶完成签到,获得积分10
5秒前
ZHANGJIAN完成签到 ,获得积分10
5秒前
JamesPei应助酷酷妙梦采纳,获得10
6秒前
7秒前
7秒前
7秒前
Jasper应助柴犬采纳,获得10
7秒前
SEVEN完成签到,获得积分10
9秒前
用户123完成签到,获得积分10
9秒前
无私萧发布了新的文献求助10
9秒前
zhangyuheng完成签到 ,获得积分10
10秒前
yolo完成签到,获得积分10
10秒前
10秒前
简单如容完成签到,获得积分10
11秒前
11秒前
12秒前
Sene完成签到,获得积分10
12秒前
www完成签到,获得积分10
12秒前
12秒前
李依伊完成签到,获得积分10
13秒前
年纪阿瑟东完成签到,获得积分10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143088
求助须知:如何正确求助?哪些是违规求助? 2794180
关于积分的说明 7810221
捐赠科研通 2450424
什么是DOI,文献DOI怎么找? 1303824
科研通“疑难数据库(出版商)”最低求助积分说明 627066
版权声明 601384