Plasma Steroid Profiling Combined With Machine Learning for the Differential Diagnosis in Mild Autonomous Cortisol Secretion From Nonfunctioning Adenoma in Patients With Adrenal Incidentalomas

医学 类固醇 鉴别诊断 内科学 肾上腺腺瘤 分泌物 内分泌学 腺瘤 激素 仿形(计算机编程) 病理 计算机科学 操作系统
作者
Danni Mu,Qian Xia,Yichen Ma,Xi Wang,Yumeng Gao,Xiaoli Ma,Shaowei Xie,Li’an Hou,Qi Zhang,Fanghui Zhao,Liangyu Xia,Liling Lin,Ling Qiu,Jie Wu,Songlin Yu,Xinqi Cheng
出处
期刊:Endocrine Practice [Elsevier]
卷期号:30 (7): 647-656 被引量:3
标识
DOI:10.1016/j.eprac.2024.04.008
摘要

Background To assess the diagnostic value of combining plasma steroid profiling with machine learning (ML) in differentiating between mild autonomous cortisol secretion (MACS) and nonfunctioning adenoma (NFA) in patients with adrenal incidentalomas. Methods The plasma steroid profiles data in the laboratory information system were screened from January 2021 to December 2023. EXtreme Gradient Boosting (XGBoost) was applied to establish diagnostic models using plasma 24-steroid panels and/or clinical characteristics of the subjects. The SHapley Additive exPlanation (SHAP) method was used for explaining the model. Results 76 patients with MACS and 86 patients with NFA were included in the development and internal validation cohort while the external validation cohort consisted of 27 MACS and 21 NFA cases. Among five ML models evaluated, XGBoost demonstrated superior performance with an AUC of 0.77 using 24 steroid hormones. The SHAP method identified five steroids that exhibited optimal performance in distinguishing MACS from NFA, namely dehydroepiandrosterone (DHEA), 11-deoxycortisol, 11β-hydroxytestosterone, testosterone, and dehydroepiandrosteronesulfate (DHEAS). Upon incorporating clinical features into the model, the AUC increased to 0.88, with a sensitivity of 0.77 and specificity of 0.82. Furthermore, the results obtained through SHAP revealed that lower levels of testosterone, DHEA, LDL-c, BMI, and ACTH along with higher level of 11-deoxycortisol significantly contributed to the identification of MACS in the model. Conclusions We have elucidated the utilization of ML-based steroid profiling to discriminate between MACS and NFA in patients with adrenal incidentalomas. This approach holds promise for distinguishing these two entities through a single blood collection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小许发布了新的文献求助10
刚刚
凡凡完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
风趣思山发布了新的文献求助10
刚刚
bkagyin应助zzh采纳,获得10
1秒前
1秒前
1秒前
2秒前
打打应助粗暴的背包采纳,获得10
2秒前
老子完成签到,获得积分10
2秒前
科研通AI6.1应助莫问前程采纳,获得10
2秒前
搜集达人应助lin采纳,获得10
3秒前
3秒前
科研通AI6.1应助dakjdia采纳,获得10
3秒前
3秒前
新宇星辰发布了新的文献求助10
4秒前
桐桐应助zl采纳,获得10
4秒前
4秒前
一颗菠菜完成签到,获得积分10
5秒前
Elena完成签到 ,获得积分10
5秒前
5秒前
demon应助阮楷瑞采纳,获得10
6秒前
秀丽的青发布了新的文献求助10
7秒前
R_joy完成签到 ,获得积分10
7秒前
爱喝冰可乐完成签到,获得积分10
7秒前
8秒前
DJ关闭了DJ文献求助
8秒前
EKo完成签到,获得积分10
8秒前
灵均完成签到 ,获得积分10
8秒前
8秒前
sun关闭了sun文献求助
9秒前
量子星尘发布了新的文献求助10
9秒前
青松给cha的求助进行了留言
9秒前
科研通AI2S应助山茱萸采纳,获得30
9秒前
10秒前
reform01发布了新的文献求助10
11秒前
11秒前
安静的ky完成签到,获得积分10
11秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5751577
求助须知:如何正确求助?哪些是违规求助? 5469081
关于积分的说明 15370428
捐赠科研通 4890701
什么是DOI,文献DOI怎么找? 2629836
邀请新用户注册赠送积分活动 1578067
关于科研通互助平台的介绍 1534214