Plasma Steroid Profiling Combined With Machine Learning for the Differential Diagnosis in Mild Autonomous Cortisol Secretion From Nonfunctioning Adenoma in Patients With Adrenal Incidentalomas

医学 类固醇 队列 内科学 脱氢表雄酮 肾上腺腺瘤 内分泌学 腺瘤 激素 雄激素
作者
Dezhi Mu,Qian Xia,Yichen Ma,Xi Wang,Yumeng Gao,Xiaoli Ma,Shaowei Xie,Li’an Hou,Qi Zhang,Fanghui Zhao,Liangyu Xia,Liling Lin,Ling Qiu,Jie Wu,Songlin Yu,Xinqi Cheng
出处
期刊:Endocrine Practice [Elsevier]
卷期号:30 (7): 647-656
标识
DOI:10.1016/j.eprac.2024.04.008
摘要

Background To assess the diagnostic value of combining plasma steroid profiling with machine learning (ML) in differentiating between mild autonomous cortisol secretion (MACS) and nonfunctioning adenoma (NFA) in patients with adrenal incidentalomas. Methods The plasma steroid profiles data in the laboratory information system were screened from January 2021 to December 2023. EXtreme Gradient Boosting (XGBoost) was applied to establish diagnostic models using plasma 24-steroid panels and/or clinical characteristics of the subjects. The SHapley Additive exPlanation (SHAP) method was used for explaining the model. Results 76 patients with MACS and 86 patients with NFA were included in the development and internal validation cohort while the external validation cohort consisted of 27 MACS and 21 NFA cases. Among five ML models evaluated, XGBoost demonstrated superior performance with an AUC of 0.77 using 24 steroid hormones. The SHAP method identified five steroids that exhibited optimal performance in distinguishing MACS from NFA, namely dehydroepiandrosterone (DHEA), 11-deoxycortisol, 11β-hydroxytestosterone, testosterone, and dehydroepiandrosteronesulfate (DHEAS). Upon incorporating clinical features into the model, the AUC increased to 0.88, with a sensitivity of 0.77 and specificity of 0.82. Furthermore, the results obtained through SHAP revealed that lower levels of testosterone, DHEA, LDL-c, BMI, and ACTH along with higher level of 11-deoxycortisol significantly contributed to the identification of MACS in the model. Conclusions We have elucidated the utilization of ML-based steroid profiling to discriminate between MACS and NFA in patients with adrenal incidentalomas. This approach holds promise for distinguishing these two entities through a single blood collection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
张美超发布了新的文献求助30
1秒前
yinan发布了新的文献求助10
5秒前
一由天完成签到,获得积分10
6秒前
乐乐应助空曲采纳,获得10
6秒前
斯文败类应助ddd采纳,获得10
6秒前
pan完成签到,获得积分10
7秒前
8秒前
11秒前
xl完成签到 ,获得积分10
12秒前
Lee2000发布了新的文献求助10
13秒前
15秒前
十月二十完成签到,获得积分10
17秒前
干净元柏完成签到,获得积分10
19秒前
开心的听双完成签到,获得积分20
20秒前
20秒前
十月二十发布了新的文献求助10
20秒前
20秒前
20秒前
22秒前
优雅的帅哥完成签到 ,获得积分10
23秒前
ggM发布了新的文献求助10
25秒前
balzacsun发布了新的文献求助10
27秒前
铮铮完成签到,获得积分10
27秒前
易落完成签到,获得积分10
27秒前
科研通AI2S应助junzpeng采纳,获得10
29秒前
Jasper应助strelias采纳,获得10
30秒前
欣慰的海豚完成签到,获得积分10
31秒前
31秒前
空曲发布了新的文献求助10
34秒前
小蘑菇应助林一存采纳,获得10
35秒前
balzacsun完成签到,获得积分20
36秒前
36秒前
科研通AI2S应助mufcyang采纳,获得10
36秒前
搜集达人应助聪明与摩羯采纳,获得10
37秒前
yuanzhilong发布了新的文献求助10
37秒前
酷炫的电源完成签到 ,获得积分10
38秒前
小马甲应助乐橙采纳,获得10
39秒前
菡一往完成签到 ,获得积分10
39秒前
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503