Plasma Steroid Profiling Combined With Machine Learning for the Differential Diagnosis in Mild Autonomous Cortisol Secretion From Nonfunctioning Adenoma in Patients With Adrenal Incidentalomas

医学 类固醇 鉴别诊断 内科学 肾上腺腺瘤 分泌物 内分泌学 腺瘤 激素 仿形(计算机编程) 病理 计算机科学 操作系统
作者
Danni Mu,Qian Xia,Yichen Ma,Xi Wang,Yumeng Gao,Xiaoli Ma,Shaowei Xie,Li’an Hou,Qi Zhang,Fanghui Zhao,Liangyu Xia,Liling Lin,Ling Qiu,Jie Wu,Songlin Yu,Xinqi Cheng
出处
期刊:Endocrine Practice [Elsevier]
卷期号:30 (7): 647-656 被引量:3
标识
DOI:10.1016/j.eprac.2024.04.008
摘要

Background To assess the diagnostic value of combining plasma steroid profiling with machine learning (ML) in differentiating between mild autonomous cortisol secretion (MACS) and nonfunctioning adenoma (NFA) in patients with adrenal incidentalomas. Methods The plasma steroid profiles data in the laboratory information system were screened from January 2021 to December 2023. EXtreme Gradient Boosting (XGBoost) was applied to establish diagnostic models using plasma 24-steroid panels and/or clinical characteristics of the subjects. The SHapley Additive exPlanation (SHAP) method was used for explaining the model. Results 76 patients with MACS and 86 patients with NFA were included in the development and internal validation cohort while the external validation cohort consisted of 27 MACS and 21 NFA cases. Among five ML models evaluated, XGBoost demonstrated superior performance with an AUC of 0.77 using 24 steroid hormones. The SHAP method identified five steroids that exhibited optimal performance in distinguishing MACS from NFA, namely dehydroepiandrosterone (DHEA), 11-deoxycortisol, 11β-hydroxytestosterone, testosterone, and dehydroepiandrosteronesulfate (DHEAS). Upon incorporating clinical features into the model, the AUC increased to 0.88, with a sensitivity of 0.77 and specificity of 0.82. Furthermore, the results obtained through SHAP revealed that lower levels of testosterone, DHEA, LDL-c, BMI, and ACTH along with higher level of 11-deoxycortisol significantly contributed to the identification of MACS in the model. Conclusions We have elucidated the utilization of ML-based steroid profiling to discriminate between MACS and NFA in patients with adrenal incidentalomas. This approach holds promise for distinguishing these two entities through a single blood collection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
赘婿应助福尔摩云采纳,获得30
刚刚
刚刚
hayin完成签到 ,获得积分10
1秒前
whishark完成签到,获得积分20
1秒前
Goblin完成签到,获得积分10
1秒前
脑洞疼应助斯文雪青采纳,获得10
1秒前
在水一方应助Moments采纳,获得10
4秒前
Ally发布了新的文献求助200
4秒前
瞒总发布了新的文献求助10
4秒前
Erika完成签到,获得积分10
6秒前
7秒前
Wxj246801完成签到,获得积分20
7秒前
CarryZ8完成签到,获得积分10
8秒前
禧煦给禧煦的求助进行了留言
9秒前
Erika发布了新的文献求助10
12秒前
杨恭鑫发布了新的文献求助10
14秒前
小蚂蚁完成签到,获得积分10
14秒前
Y.完成签到,获得积分10
15秒前
邓娅琴完成签到 ,获得积分10
15秒前
16秒前
感动的大树完成签到,获得积分10
16秒前
17秒前
飘逸的又夏完成签到 ,获得积分10
18秒前
haha完成签到 ,获得积分10
19秒前
CipherSage应助顺顺采纳,获得10
19秒前
22秒前
25秒前
科研通AI2S应助猪猪hero采纳,获得10
25秒前
Lv完成签到,获得积分10
27秒前
阿飞飞啊发布了新的文献求助10
27秒前
夜雨微眠完成签到,获得积分10
30秒前
研友_n0kYwL发布了新的文献求助10
30秒前
木子完成签到 ,获得积分10
32秒前
34秒前
35秒前
小潘完成签到,获得积分10
37秒前
sb完成签到,获得积分10
38秒前
38秒前
zhigaow发布了新的文献求助10
40秒前
上官若男应助中单阿飞采纳,获得10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499138
求助须知:如何正确求助?哪些是违规求助? 4596150
关于积分的说明 14452711
捐赠科研通 4529291
什么是DOI,文献DOI怎么找? 2481892
邀请新用户注册赠送积分活动 1465918
关于科研通互助平台的介绍 1438802