Plasma Steroid Profiling Combined With Machine Learning for the Differential Diagnosis in Mild Autonomous Cortisol Secretion From Nonfunctioning Adenoma in Patients With Adrenal Incidentalomas

医学 类固醇 鉴别诊断 内科学 肾上腺腺瘤 分泌物 内分泌学 腺瘤 激素 仿形(计算机编程) 病理 计算机科学 操作系统
作者
Danni Mu,Qian Xia,Yichen Ma,Xi Wang,Yumeng Gao,Xiaoli Ma,Shaowei Xie,Li’an Hou,Qi Zhang,Fanghui Zhao,Liangyu Xia,Liling Lin,Ling Qiu,Jie Wu,Songlin Yu,Xinqi Cheng
出处
期刊:Endocrine Practice [Elsevier BV]
卷期号:30 (7): 647-656 被引量:3
标识
DOI:10.1016/j.eprac.2024.04.008
摘要

Background To assess the diagnostic value of combining plasma steroid profiling with machine learning (ML) in differentiating between mild autonomous cortisol secretion (MACS) and nonfunctioning adenoma (NFA) in patients with adrenal incidentalomas. Methods The plasma steroid profiles data in the laboratory information system were screened from January 2021 to December 2023. EXtreme Gradient Boosting (XGBoost) was applied to establish diagnostic models using plasma 24-steroid panels and/or clinical characteristics of the subjects. The SHapley Additive exPlanation (SHAP) method was used for explaining the model. Results 76 patients with MACS and 86 patients with NFA were included in the development and internal validation cohort while the external validation cohort consisted of 27 MACS and 21 NFA cases. Among five ML models evaluated, XGBoost demonstrated superior performance with an AUC of 0.77 using 24 steroid hormones. The SHAP method identified five steroids that exhibited optimal performance in distinguishing MACS from NFA, namely dehydroepiandrosterone (DHEA), 11-deoxycortisol, 11β-hydroxytestosterone, testosterone, and dehydroepiandrosteronesulfate (DHEAS). Upon incorporating clinical features into the model, the AUC increased to 0.88, with a sensitivity of 0.77 and specificity of 0.82. Furthermore, the results obtained through SHAP revealed that lower levels of testosterone, DHEA, LDL-c, BMI, and ACTH along with higher level of 11-deoxycortisol significantly contributed to the identification of MACS in the model. Conclusions We have elucidated the utilization of ML-based steroid profiling to discriminate between MACS and NFA in patients with adrenal incidentalomas. This approach holds promise for distinguishing these two entities through a single blood collection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
激情的自行车完成签到,获得积分10
2秒前
2秒前
白蓝红完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
JamesPei应助科研小白采纳,获得10
4秒前
深情安青应助runtang采纳,获得30
4秒前
songcy7完成签到,获得积分10
4秒前
烟花应助六芒星采纳,获得10
5秒前
andy_lee发布了新的文献求助10
5秒前
6秒前
司徒水绿完成签到 ,获得积分10
6秒前
嘻嘻嘻发布了新的文献求助10
6秒前
削皮柚子发布了新的文献求助10
7秒前
俭朴蜜蜂发布了新的文献求助200
8秒前
依夏祭完成签到,获得积分10
9秒前
cc完成签到 ,获得积分10
9秒前
9秒前
天天快乐应助粤十一采纳,获得10
10秒前
YiJin_Wang发布了新的文献求助10
11秒前
乐情发布了新的文献求助20
11秒前
14秒前
wxs发布了新的文献求助10
14秒前
可爱的函函应助酷酷巧蟹采纳,获得10
15秒前
15秒前
blablawindy发布了新的文献求助10
16秒前
科研小白发布了新的文献求助10
17秒前
李爱国应助嘿咻采纳,获得10
17秒前
17秒前
17秒前
Steven发布了新的文献求助10
18秒前
18秒前
迟有朝完成签到,获得积分10
20秒前
崔佳慧发布了新的文献求助10
20秒前
粤十一完成签到,获得积分10
21秒前
22秒前
angelinazh完成签到,获得积分10
22秒前
粤十一发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4578059
求助须知:如何正确求助?哪些是违规求助? 3997093
关于积分的说明 12374500
捐赠科研通 3671156
什么是DOI,文献DOI怎么找? 2023295
邀请新用户注册赠送积分活动 1057253
科研通“疑难数据库(出版商)”最低求助积分说明 944206