Fine-Grained Recognition With Learnable Semantic Data Augmentation

计算机科学 人工智能 模式识别(心理学) 自然语言处理 计算机视觉
作者
Yifan Pu,Yizeng Han,Yulin Wang,Junlan Feng,Chao Deng,Gao Huang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3130-3144 被引量:12
标识
DOI:10.1109/tip.2024.3364500
摘要

Fine-grained image recognition is a longstanding computer vision challenge that focuses on differentiating objects belonging to multiple subordinate categories within the same meta-category. Since images belonging to the same meta-category usually share similar visual appearances, mining discriminative visual cues is the key to distinguishing fine-grained categories. Although commonly used image-level data augmentation techniques have achieved great success in generic image classification problems, they are rarely applied in fine-grained scenarios, because their random editing-region behavior is prone to destroy the discriminative visual cues residing in the subtle regions. In this paper, we propose diversifying the training data at the feature-level to alleviate the discriminative region loss problem. Specifically, we produce diversified augmented samples by translating image features along semantically meaningful directions. The semantic directions are estimated with a covariance prediction network, which predicts a sample-wise covariance matrix to adapt to the large intra-class variation inherent in fine-grained images. Furthermore, the covariance prediction network is jointly optimized with the classification network in a meta-learning manner to alleviate the degenerate solution problem. Experiments on four competitive fine-grained recognition benchmarks (CUB-200-2011, Stanford Cars, FGVC Aircrafts, NABirds) demonstrate that our method significantly improves the generalization performance on several popular classification networks (e.g., ResNets, DenseNets, EfficientNets, RegNets and ViT). Combined with a recently proposed method, our semantic data augmentation approach achieves state-of-the-art performance on the CUB-200-2011 dataset. The source code will be released.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽焦完成签到 ,获得积分10
刚刚
gu发布了新的文献求助10
2秒前
HYQ完成签到 ,获得积分10
2秒前
7秒前
9秒前
9秒前
天天快乐应助super chan采纳,获得10
10秒前
Owen应助懒大王要摆烂采纳,获得10
12秒前
花草般的清香完成签到,获得积分10
13秒前
Lyven发布了新的文献求助10
13秒前
15秒前
烟花应助qiu采纳,获得10
16秒前
超帅慕晴发布了新的文献求助10
16秒前
天天发布了新的文献求助10
21秒前
sunaijia发布了新的文献求助10
22秒前
26秒前
李爱国应助嘟嘟嘟采纳,获得10
29秒前
29秒前
31秒前
31秒前
罗浚航发布了新的文献求助10
32秒前
宇智波开心完成签到 ,获得积分10
32秒前
33秒前
海阔云高完成签到 ,获得积分10
33秒前
天生圣人完成签到,获得积分10
34秒前
gu发布了新的文献求助10
35秒前
super chan发布了新的文献求助10
38秒前
38秒前
Tree完成签到,获得积分20
43秒前
嘟嘟嘟发布了新的文献求助10
43秒前
什么什么发布了新的文献求助10
45秒前
情怀应助新羽采纳,获得10
46秒前
科研小生完成签到,获得积分10
49秒前
50秒前
赤安完成签到,获得积分10
50秒前
anne完成签到 ,获得积分10
53秒前
121呀发布了新的文献求助10
56秒前
天天快乐应助super chan采纳,获得10
56秒前
56秒前
58秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3673567
求助须知:如何正确求助?哪些是违规求助? 3229137
关于积分的说明 9784287
捐赠科研通 2939726
什么是DOI,文献DOI怎么找? 1611252
邀请新用户注册赠送积分活动 760877
科研通“疑难数据库(出版商)”最低求助积分说明 736296