Multi-Label Action Anticipation for Real-World Videos With Scene Understanding

预测(人工智能) 计算机科学 动作(物理) 人工智能 机器学习 动作识别 图形 理论计算机科学 量子力学 物理 班级(哲学)
作者
Yuqi Zhang,Xiucheng Li,Hao Xie,Weijun Zhuang,Shihui Guo,Zhijun Li
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 3242-3255
标识
DOI:10.1109/tip.2024.3391692
摘要

With human action anticipation becoming an essential tool for many practical applications, there has been an increasing trend in developing more accurate anticipation models in recent years. Most of the existing methods target standard action anticipation datasets, in which they could produce promising results by learning action-level contextual patterns. However, the over-simplified scenarios of standard datasets often do not hold in reality, which hinders them from being applied to real-world applications. To address this, we propose a scene-graph-based novel model SEAD that learns the action anticipation at the high semantic level rather than focusing on the action level. The proposed model is composed of two main modules, 1) the scene prediction module, which predicts future scene graphs using a grammar dictionary, and 2) the action anticipation module, which is responsible for predicting future actions with an LSTM network by taking as input the observed and predicted scene graphs. We evaluate our model on two real-world video datasets (Charades and Home Action Genome) as well as a standard action anticipation dataset (CAD-120) to verify its efficacy. The experimental results show that SEAD is able to outperform existing methods by large margins on the two real-world datasets and can also yield stable predictions on the standard dataset at the same time. In particular, our proposed model surpasses the state-of-the-art methods with mean average precision improvements consistently higher than 65% on the Charades dataset and an average improvement of 40.6% on the Home Action Genome dataset.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li完成签到 ,获得积分10
刚刚
YYT完成签到,获得积分10
1秒前
1秒前
36456657应助rory采纳,获得10
2秒前
西风凌月发布了新的文献求助10
2秒前
2秒前
3秒前
柚子发布了新的文献求助10
3秒前
3秒前
英俊的铭应助Liao采纳,获得10
3秒前
4秒前
Elk完成签到,获得积分10
4秒前
4秒前
4秒前
gqb驳回了思源应助
4秒前
4秒前
科研通AI2S应助ccc采纳,获得10
4秒前
乐乐乐乐乐乐应助zpc采纳,获得10
4秒前
5秒前
我是老大应助xl采纳,获得10
5秒前
5秒前
Ll完成签到,获得积分10
6秒前
6秒前
grnn完成签到,获得积分10
6秒前
迅速的小鸽子完成签到 ,获得积分10
7秒前
Elk发布了新的文献求助10
7秒前
brossica发布了新的文献求助10
7秒前
7秒前
7秒前
海洋发布了新的文献求助10
7秒前
hhhhh完成签到,获得积分10
8秒前
FashionBoy应助Darming采纳,获得10
8秒前
8秒前
11完成签到,获得积分10
8秒前
打打应助阳光万声采纳,获得10
9秒前
车沅发布了新的文献求助10
9秒前
YYT发布了新的文献求助10
9秒前
9秒前
9秒前
UpUp发布了新的文献求助10
9秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
Semiconductor Process Reliability in Practice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206140
求助须知:如何正确求助?哪些是违规求助? 2855558
关于积分的说明 8100014
捐赠科研通 2520572
什么是DOI,文献DOI怎么找? 1353532
科研通“疑难数据库(出版商)”最低求助积分说明 641780
邀请新用户注册赠送积分活动 612869